基于改进灰狼算法的机器人精度补偿方法研究

Tianchen Peng, Tao Zhang, Zejun Sun
{"title":"基于改进灰狼算法的机器人精度补偿方法研究","authors":"Tianchen Peng, Tao Zhang, Zejun Sun","doi":"10.1109/ACIRS58671.2023.10239812","DOIUrl":null,"url":null,"abstract":"This paper proposes a method using the modified grey wolf algorithm for optimizing robot motion accuracy to address problems of insufficient robot trajectory accuracy and low efficiency of traditional optimization algorithms. First, the Denavit-Hartenberg method is used to establish a robotics kinematic error model. Considering the parameters for optimization in the model as variables in the system, the problem of improving the accuracy of the robot is transformed into a problem of optimization for a nonlinear system. An objective function is designed according to the robot's trajectory it will be solved by the MGWO (modified grey wolf) algorithm to obtain the optimal parameters of the robot in order to improve the positioning accuracy of the robot. The experimental results show that this method is effective and can effectively reduce the robot motion error and improve positioning accuracy after algorithm optimization.","PeriodicalId":148401,"journal":{"name":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Robot Accuracy Compensation Method Based on Modified Grey Wolf Algorithm\",\"authors\":\"Tianchen Peng, Tao Zhang, Zejun Sun\",\"doi\":\"10.1109/ACIRS58671.2023.10239812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method using the modified grey wolf algorithm for optimizing robot motion accuracy to address problems of insufficient robot trajectory accuracy and low efficiency of traditional optimization algorithms. First, the Denavit-Hartenberg method is used to establish a robotics kinematic error model. Considering the parameters for optimization in the model as variables in the system, the problem of improving the accuracy of the robot is transformed into a problem of optimization for a nonlinear system. An objective function is designed according to the robot's trajectory it will be solved by the MGWO (modified grey wolf) algorithm to obtain the optimal parameters of the robot in order to improve the positioning accuracy of the robot. The experimental results show that this method is effective and can effectively reduce the robot motion error and improve positioning accuracy after algorithm optimization.\",\"PeriodicalId\":148401,\"journal\":{\"name\":\"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIRS58671.2023.10239812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS58671.2023.10239812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统优化算法存在的机器人轨迹精度不足、效率低等问题,提出了一种利用改进灰狼算法优化机器人运动精度的方法。首先,采用Denavit-Hartenberg方法建立机器人运动学误差模型。将模型中用于优化的参数作为系统中的变量,将提高机器人精度的问题转化为非线性系统的优化问题。根据机器人的运动轨迹设计目标函数,利用修正灰狼算法求解目标函数,得到机器人的最优参数,以提高机器人的定位精度。实验结果表明,该方法是有效的,经过算法优化后,可以有效地减小机器人运动误差,提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Robot Accuracy Compensation Method Based on Modified Grey Wolf Algorithm
This paper proposes a method using the modified grey wolf algorithm for optimizing robot motion accuracy to address problems of insufficient robot trajectory accuracy and low efficiency of traditional optimization algorithms. First, the Denavit-Hartenberg method is used to establish a robotics kinematic error model. Considering the parameters for optimization in the model as variables in the system, the problem of improving the accuracy of the robot is transformed into a problem of optimization for a nonlinear system. An objective function is designed according to the robot's trajectory it will be solved by the MGWO (modified grey wolf) algorithm to obtain the optimal parameters of the robot in order to improve the positioning accuracy of the robot. The experimental results show that this method is effective and can effectively reduce the robot motion error and improve positioning accuracy after algorithm optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信