三维集成电路芯片堆中温度最大化的功能测试图生成

S. Srinivasan, S. Kundu
{"title":"三维集成电路芯片堆中温度最大化的功能测试图生成","authors":"S. Srinivasan, S. Kundu","doi":"10.1109/ISQED.2012.6187482","DOIUrl":null,"url":null,"abstract":"In a stacked 3D Integrated Circuit (IC), the total power dissipated per unit surface area typically exceeds that of 2D ICs. This results in creation of a greater number of localized thermal hotspots in individual dies of the 3D IC. The location and temperature of these hotspots depend on the actual workload executing on a 3D IC. Since the power dissipation pattern from the applied workload may vary over time, the location and intensity of thermal hotspots may vary with it. The applied workload may be construed as consisting of phases, where the spatial power dissipation pattern remains constant over a phase and changes only from one phase to another. In this paper (i) we develop a thermal modeling scheme that predicts temperature profile at the end of a program phase, and use (ii) a novel Integer Linear Programming (ILP) formulation to arrange program phases to create worst case temperature at a target location. Experimental results show that, by taking the spatio-temporal effect into account, we can raise temperature of a hotspot much higher than what is possible from purely functional trace. Hotspot temperature maximization is important in design verification and testing.","PeriodicalId":205874,"journal":{"name":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Functional test pattern generation for maximizing temperature in 3D IC chip stack\",\"authors\":\"S. Srinivasan, S. Kundu\",\"doi\":\"10.1109/ISQED.2012.6187482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a stacked 3D Integrated Circuit (IC), the total power dissipated per unit surface area typically exceeds that of 2D ICs. This results in creation of a greater number of localized thermal hotspots in individual dies of the 3D IC. The location and temperature of these hotspots depend on the actual workload executing on a 3D IC. Since the power dissipation pattern from the applied workload may vary over time, the location and intensity of thermal hotspots may vary with it. The applied workload may be construed as consisting of phases, where the spatial power dissipation pattern remains constant over a phase and changes only from one phase to another. In this paper (i) we develop a thermal modeling scheme that predicts temperature profile at the end of a program phase, and use (ii) a novel Integer Linear Programming (ILP) formulation to arrange program phases to create worst case temperature at a target location. Experimental results show that, by taking the spatio-temporal effect into account, we can raise temperature of a hotspot much higher than what is possible from purely functional trace. Hotspot temperature maximization is important in design verification and testing.\",\"PeriodicalId\":205874,\"journal\":{\"name\":\"Thirteenth International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirteenth International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2012.6187482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2012.6187482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在堆叠式3D集成电路(IC)中,单位表面面积的总功耗通常超过2D集成电路。这导致在3D IC的单个芯片中产生更多数量的局部热热点。这些热点的位置和温度取决于在3D IC上执行的实际工作负载。由于应用工作负载的功耗模式可能随时间而变化,因此热热点的位置和强度可能随之变化。应用的工作负载可以解释为由相组成,其中空间功率耗散模式在一个相上保持恒定,并且仅从一个相到另一个相变化。在本文中,我们(i)开发了一种热建模方案,用于预测程序阶段结束时的温度分布,并使用(ii)一种新颖的整数线性规划(ILP)公式来安排程序阶段,以在目标位置创建最坏情况下的温度。实验结果表明,通过考虑时空效应,我们可以将热点的温度提高到比纯功能轨迹高得多的水平。热点温度最大化在设计验证和测试中具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional test pattern generation for maximizing temperature in 3D IC chip stack
In a stacked 3D Integrated Circuit (IC), the total power dissipated per unit surface area typically exceeds that of 2D ICs. This results in creation of a greater number of localized thermal hotspots in individual dies of the 3D IC. The location and temperature of these hotspots depend on the actual workload executing on a 3D IC. Since the power dissipation pattern from the applied workload may vary over time, the location and intensity of thermal hotspots may vary with it. The applied workload may be construed as consisting of phases, where the spatial power dissipation pattern remains constant over a phase and changes only from one phase to another. In this paper (i) we develop a thermal modeling scheme that predicts temperature profile at the end of a program phase, and use (ii) a novel Integer Linear Programming (ILP) formulation to arrange program phases to create worst case temperature at a target location. Experimental results show that, by taking the spatio-temporal effect into account, we can raise temperature of a hotspot much higher than what is possible from purely functional trace. Hotspot temperature maximization is important in design verification and testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信