无线蜂窝网络中多rat优化的鲁棒干扰识别

Emmanuel Pollakis, R. Cavalcante, S. Stańczak, F. Penna
{"title":"无线蜂窝网络中多rat优化的鲁棒干扰识别","authors":"Emmanuel Pollakis, R. Cavalcante, S. Stańczak, F. Penna","doi":"10.1109/DYSPAN.2012.6478147","DOIUrl":null,"url":null,"abstract":"The objective of this study is to devise novel cognitive interference identification techniques for UMTS and LTE networks. We apply machine learning techniques to reconstruct interference patterns using a priori system knowledge, limited user information and sparse pathloss and interference measurements. The obtained interference patterns are used to build a multi-RAT optimization procedure aiming at energy efficient operation.","PeriodicalId":224818,"journal":{"name":"2012 IEEE International Symposium on Dynamic Spectrum Access Networks","volume":"1437 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust interference identification for multi-RAT optimization in wireless cellular networks\",\"authors\":\"Emmanuel Pollakis, R. Cavalcante, S. Stańczak, F. Penna\",\"doi\":\"10.1109/DYSPAN.2012.6478147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to devise novel cognitive interference identification techniques for UMTS and LTE networks. We apply machine learning techniques to reconstruct interference patterns using a priori system knowledge, limited user information and sparse pathloss and interference measurements. The obtained interference patterns are used to build a multi-RAT optimization procedure aiming at energy efficient operation.\",\"PeriodicalId\":224818,\"journal\":{\"name\":\"2012 IEEE International Symposium on Dynamic Spectrum Access Networks\",\"volume\":\"1437 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Dynamic Spectrum Access Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DYSPAN.2012.6478147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Dynamic Spectrum Access Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYSPAN.2012.6478147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是为UMTS和LTE网络设计新的认知干扰识别技术。我们应用机器学习技术,利用先验系统知识、有限的用户信息、稀疏的路径损失和干扰测量来重建干扰模式。利用得到的干扰图构建了以节能运行为目标的多rat优化程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust interference identification for multi-RAT optimization in wireless cellular networks
The objective of this study is to devise novel cognitive interference identification techniques for UMTS and LTE networks. We apply machine learning techniques to reconstruct interference patterns using a priori system knowledge, limited user information and sparse pathloss and interference measurements. The obtained interference patterns are used to build a multi-RAT optimization procedure aiming at energy efficient operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信