用交叉熵方法建立核Fisher判别模型

B. Santosa, Andiek Sunarto
{"title":"用交叉熵方法建立核Fisher判别模型","authors":"B. Santosa, Andiek Sunarto","doi":"10.1109/SoCPaR.2009.138","DOIUrl":null,"url":null,"abstract":"In this paper, the cross-entropy (CE) method is proposed to solve non-linear discriminant analysis or Kernel Fisher discriminant (CE-KFD) analysis. CE through certain steps can find the optimal or near optimal solution with a fast rate of convergence for optimization problem. While, KFD is to solve problem of Fisher’s linear discriminant in a kernel feature space F by maximizing between class variance and minimizing within class variance. Through the numerical experiments, we found that CE-KFD demonstrates the high accuracy of the results compared to the traditional methods, Fisher LDA and kernel Fisher (KFD) with eigen decomposition method.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Kernel Fisher Discriminant Model Using the Cross-Entropy Method\",\"authors\":\"B. Santosa, Andiek Sunarto\",\"doi\":\"10.1109/SoCPaR.2009.138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the cross-entropy (CE) method is proposed to solve non-linear discriminant analysis or Kernel Fisher discriminant (CE-KFD) analysis. CE through certain steps can find the optimal or near optimal solution with a fast rate of convergence for optimization problem. While, KFD is to solve problem of Fisher’s linear discriminant in a kernel feature space F by maximizing between class variance and minimizing within class variance. Through the numerical experiments, we found that CE-KFD demonstrates the high accuracy of the results compared to the traditional methods, Fisher LDA and kernel Fisher (KFD) with eigen decomposition method.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出用交叉熵(CE)方法求解非线性判别分析或Kernel Fisher判别分析。CE可以通过一定的步骤找到最优解或近似最优解,收敛速度快。而KFD则是通过类间方差的最大化和类内方差的最小化来解决核特征空间F中的Fisher线性判别问题。通过数值实验,我们发现CE-KFD与传统的Fisher LDA和核Fisher (KFD)特征分解方法相比,结果具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Kernel Fisher Discriminant Model Using the Cross-Entropy Method
In this paper, the cross-entropy (CE) method is proposed to solve non-linear discriminant analysis or Kernel Fisher discriminant (CE-KFD) analysis. CE through certain steps can find the optimal or near optimal solution with a fast rate of convergence for optimization problem. While, KFD is to solve problem of Fisher’s linear discriminant in a kernel feature space F by maximizing between class variance and minimizing within class variance. Through the numerical experiments, we found that CE-KFD demonstrates the high accuracy of the results compared to the traditional methods, Fisher LDA and kernel Fisher (KFD) with eigen decomposition method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信