从缺失特征数据估计高斯混合模型

D. McMichael
{"title":"从缺失特征数据估计高斯混合模型","authors":"D. McMichael","doi":"10.1109/ISSPA.1996.615761","DOIUrl":null,"url":null,"abstract":"Maximum likelihood (ML) fitting of Gaussian mixture model (GMMs) to feature data is most efficiently handled by the EM algorithm [1, 2, 3, 4]. The EM algorithm is directly applicable to multivariate data in which all the features are always present, and there are no missing values. Unfortunately, missing values are common: caused either by random or systematic effects. This study presents a novel algorithm for estimating the parameters of GMMs when there are random missing values. The approach is Bayesian in the missing values and ML in the GMM parameters. The same model can be applied to heteroscedastic data, and to indirectly observable mixed Gaussian observations.","PeriodicalId":359344,"journal":{"name":"Fourth International Symposium on Signal Processing and Its Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Estimating Gaussian Mixture Models from Data with Missing Features\",\"authors\":\"D. McMichael\",\"doi\":\"10.1109/ISSPA.1996.615761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum likelihood (ML) fitting of Gaussian mixture model (GMMs) to feature data is most efficiently handled by the EM algorithm [1, 2, 3, 4]. The EM algorithm is directly applicable to multivariate data in which all the features are always present, and there are no missing values. Unfortunately, missing values are common: caused either by random or systematic effects. This study presents a novel algorithm for estimating the parameters of GMMs when there are random missing values. The approach is Bayesian in the missing values and ML in the GMM parameters. The same model can be applied to heteroscedastic data, and to indirectly observable mixed Gaussian observations.\",\"PeriodicalId\":359344,\"journal\":{\"name\":\"Fourth International Symposium on Signal Processing and Its Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Symposium on Signal Processing and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.1996.615761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Signal Processing and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1996.615761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

高斯混合模型(GMMs)对特征数据的最大似然拟合(ML)是EM算法最有效的处理方法[1,2,3,4]。该算法直接适用于多变量数据,其中所有特征总是存在,并且没有缺失值。不幸的是,缺失值是常见的:由随机或系统影响引起的。提出了一种用于随机缺失值情况下GMMs参数估计的新算法。该方法在缺失值中使用贝叶斯方法,在GMM参数中使用ML方法。同样的模型可以应用于异方差数据,也可以应用于间接可观测的混合高斯观测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Gaussian Mixture Models from Data with Missing Features
Maximum likelihood (ML) fitting of Gaussian mixture model (GMMs) to feature data is most efficiently handled by the EM algorithm [1, 2, 3, 4]. The EM algorithm is directly applicable to multivariate data in which all the features are always present, and there are no missing values. Unfortunately, missing values are common: caused either by random or systematic effects. This study presents a novel algorithm for estimating the parameters of GMMs when there are random missing values. The approach is Bayesian in the missing values and ML in the GMM parameters. The same model can be applied to heteroscedastic data, and to indirectly observable mixed Gaussian observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信