雷达片上实验室表征UAM应用

A. Menichino, V. Di Vito, Gennaro Ariante, G. Del Core
{"title":"雷达片上实验室表征UAM应用","authors":"A. Menichino, V. Di Vito, Gennaro Ariante, G. Del Core","doi":"10.1109/MetroAeroSpace57412.2023.10190006","DOIUrl":null,"url":null,"abstract":"Urban Air Mobility (UAM) is a safe, accessible, automated, and affordable air transportation system, exploiting the third dimension for passengers' transportation and goods delivery. Drones for delivering goods become today an important part of modern logistics in full expansion: they allow to optimize time to delivery, decongest urban environment and reduce CO2 emissions. This class of Unmanned Aerial Vehicles (UAV) will fly in a dedicated airspace, indicated as Very Low Level (<500 feet). However, considering typical dimensions of logistic drones, compared with civil aircraft or helicopters, it is unrealistic to continuously track or control them by using radar or satellite technologies. For this reason, only operations in Visual Line of Sight (VLOS) are allowed today and one of the most important aspects related to safety of flight is undoubtedly the availability of on-board Detect and Avoid (DAA) systems: they will constitute one of the main enablers for fully automated Beyond Visual Line of Sight (B-VLOS) missions and will also enable, in the future, people transportation by drones. This paper focuses on the characterization of Texas Instruments IWR1642 Radar-On-Chip, widely used in automotive sector, to evaluate its application in an obstacles detection system for UAM operations, which will be developed in the framework of a PhD activities.","PeriodicalId":153093,"journal":{"name":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar-On-Chip laboratory characterization for UAM applications\",\"authors\":\"A. Menichino, V. Di Vito, Gennaro Ariante, G. Del Core\",\"doi\":\"10.1109/MetroAeroSpace57412.2023.10190006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban Air Mobility (UAM) is a safe, accessible, automated, and affordable air transportation system, exploiting the third dimension for passengers' transportation and goods delivery. Drones for delivering goods become today an important part of modern logistics in full expansion: they allow to optimize time to delivery, decongest urban environment and reduce CO2 emissions. This class of Unmanned Aerial Vehicles (UAV) will fly in a dedicated airspace, indicated as Very Low Level (<500 feet). However, considering typical dimensions of logistic drones, compared with civil aircraft or helicopters, it is unrealistic to continuously track or control them by using radar or satellite technologies. For this reason, only operations in Visual Line of Sight (VLOS) are allowed today and one of the most important aspects related to safety of flight is undoubtedly the availability of on-board Detect and Avoid (DAA) systems: they will constitute one of the main enablers for fully automated Beyond Visual Line of Sight (B-VLOS) missions and will also enable, in the future, people transportation by drones. This paper focuses on the characterization of Texas Instruments IWR1642 Radar-On-Chip, widely used in automotive sector, to evaluate its application in an obstacles detection system for UAM operations, which will be developed in the framework of a PhD activities.\",\"PeriodicalId\":153093,\"journal\":{\"name\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"volume\":\"278 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAeroSpace57412.2023.10190006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAeroSpace57412.2023.10190006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市空中交通(UAM)是一种安全、便捷、自动化且经济实惠的航空运输系统,为乘客运输和货物交付开发了第三维度。如今,用于送货的无人机已成为现代物流的重要组成部分:它们可以优化送货时间,缓解城市环境拥堵,减少二氧化碳排放。这类无人机(UAV)将在专用空域飞行,指示为极低空(<500英尺)。然而,考虑到物流无人机的典型尺寸,与民用飞机或直升机相比,利用雷达或卫星技术对其进行持续跟踪或控制是不现实的。出于这个原因,目前只允许在视距内(VLOS)进行操作,而与飞行安全相关的最重要方面之一无疑是机载探测和避免(DAA)系统的可用性:它们将构成全自动超视距(B-VLOS)任务的主要推动因素之一,并将在未来实现无人机的人员运输。本文重点介绍了广泛应用于汽车行业的德州仪器IWR1642雷达芯片的特性,以评估其在UAM操作障碍检测系统中的应用,该系统将在博士活动的框架内开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radar-On-Chip laboratory characterization for UAM applications
Urban Air Mobility (UAM) is a safe, accessible, automated, and affordable air transportation system, exploiting the third dimension for passengers' transportation and goods delivery. Drones for delivering goods become today an important part of modern logistics in full expansion: they allow to optimize time to delivery, decongest urban environment and reduce CO2 emissions. This class of Unmanned Aerial Vehicles (UAV) will fly in a dedicated airspace, indicated as Very Low Level (<500 feet). However, considering typical dimensions of logistic drones, compared with civil aircraft or helicopters, it is unrealistic to continuously track or control them by using radar or satellite technologies. For this reason, only operations in Visual Line of Sight (VLOS) are allowed today and one of the most important aspects related to safety of flight is undoubtedly the availability of on-board Detect and Avoid (DAA) systems: they will constitute one of the main enablers for fully automated Beyond Visual Line of Sight (B-VLOS) missions and will also enable, in the future, people transportation by drones. This paper focuses on the characterization of Texas Instruments IWR1642 Radar-On-Chip, widely used in automotive sector, to evaluate its application in an obstacles detection system for UAM operations, which will be developed in the framework of a PhD activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信