Y. Ding, A. Bapat, Y. Dong, C. Perrey, U. Kortshagen, C. B. Carter, S. Campbell
{"title":"单纳米硅晶体管","authors":"Y. Ding, A. Bapat, Y. Dong, C. Perrey, U. Kortshagen, C. B. Carter, S. Campbell","doi":"10.1109/DRC.2005.1553104","DOIUrl":null,"url":null,"abstract":"Unlike devices built using wafers, single nanoparticle semiconductor devices made from singlecrystal particles would allow the construction of high performance three-dimensional circuits and the integration of otherwise chemically and structurally incompatible single-crystal materials on virtually any substrate. This would dramatically reduce interconnect delay in integrated circuits, eliminate substrate parasitic effects, and allow the monolithic integration of complex systems.","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A single nanoparticle silicon transistor\",\"authors\":\"Y. Ding, A. Bapat, Y. Dong, C. Perrey, U. Kortshagen, C. B. Carter, S. Campbell\",\"doi\":\"10.1109/DRC.2005.1553104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike devices built using wafers, single nanoparticle semiconductor devices made from singlecrystal particles would allow the construction of high performance three-dimensional circuits and the integration of otherwise chemically and structurally incompatible single-crystal materials on virtually any substrate. This would dramatically reduce interconnect delay in integrated circuits, eliminate substrate parasitic effects, and allow the monolithic integration of complex systems.\",\"PeriodicalId\":306160,\"journal\":{\"name\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2005.1553104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"63rd Device Research Conference Digest, 2005. DRC '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2005.1553104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unlike devices built using wafers, single nanoparticle semiconductor devices made from singlecrystal particles would allow the construction of high performance three-dimensional circuits and the integration of otherwise chemically and structurally incompatible single-crystal materials on virtually any substrate. This would dramatically reduce interconnect delay in integrated circuits, eliminate substrate parasitic effects, and allow the monolithic integration of complex systems.