秩3二元运算的极小代数

Dmitry Eremenko
{"title":"秩3二元运算的极小代数","authors":"Dmitry Eremenko","doi":"10.32603/2071-2340-2020-1-38-48","DOIUrl":null,"url":null,"abstract":"В работе рассматривается задача нахождения минимальных алгебр бинарных операций ранга 3. Решение данной задачи является первым шагом для построения решетки алгебр бинарных операций ранга 3. Построение такой решетки — один из вопросов универсальной алгебры, в частности теории решеток. В статье описывается алгоритм нахождения минимальных алгебр, который основан на свойстве идемпотентности операций, порождающих минимальные алгебры. Данный алгоритм был реализован на языке Python. Результаты работы алгоритма представлены в табличном виде.","PeriodicalId":319537,"journal":{"name":"Computer Tools in Education","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Minimal Algebras of Binary Operations of Rank 3\",\"authors\":\"Dmitry Eremenko\",\"doi\":\"10.32603/2071-2340-2020-1-38-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"В работе рассматривается задача нахождения минимальных алгебр бинарных операций ранга 3. Решение данной задачи является первым шагом для построения решетки алгебр бинарных операций ранга 3. Построение такой решетки — один из вопросов универсальной алгебры, в частности теории решеток. В статье описывается алгоритм нахождения минимальных алгебр, который основан на свойстве идемпотентности операций, порождающих минимальные алгебры. Данный алгоритм был реализован на языке Python. Результаты работы алгоритма представлены в табличном виде.\",\"PeriodicalId\":319537,\"journal\":{\"name\":\"Computer Tools in Education\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Tools in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/2071-2340-2020-1-38-48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Tools in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/2071-2340-2020-1-38-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作涉及到找到3级二进制代数的最小代数。解决这个问题是第一步,用来构建三级二进制代数的晶格。这种格栅的构造是普遍代数的一个问题,特别是格栅理论。这篇文章描述了一种基于产生最小代数的操作的意识形态的算法。这个算法是用Python语言实现的。算法的结果以表形式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal Algebras of Binary Operations of Rank 3
В работе рассматривается задача нахождения минимальных алгебр бинарных операций ранга 3. Решение данной задачи является первым шагом для построения решетки алгебр бинарных операций ранга 3. Построение такой решетки — один из вопросов универсальной алгебры, в частности теории решеток. В статье описывается алгоритм нахождения минимальных алгебр, который основан на свойстве идемпотентности операций, порождающих минимальные алгебры. Данный алгоритм был реализован на языке Python. Результаты работы алгоритма представлены в табличном виде.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信