动态推销员问题中推销员策略可实现性咏调的构建

Anastasiya V. Gavrilova, Y. Pankratova
{"title":"动态推销员问题中推销员策略可实现性咏调的构建","authors":"Anastasiya V. Gavrilova, Y. Pankratova","doi":"10.21638/11701/spbu31.2021.10","DOIUrl":null,"url":null,"abstract":"The dynamic travelling salesman problem, where we assume that all objects can move with constant velocity, is considered. To solve this NPhard problem we use a game-theoretic approach and well-known solution concepts of pursuit games. We identify the realizability areas of salesman strategies depending on the initial positions of customers and their velocities. We present different cases of realizability areas of salesman strategies constructing in Python program with several numbers of customers.","PeriodicalId":235627,"journal":{"name":"Contributions to Game Theory and Management","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About Construction of Realizability Arias of Salesman Strategies in Dynamic Salesmen Problem\",\"authors\":\"Anastasiya V. Gavrilova, Y. Pankratova\",\"doi\":\"10.21638/11701/spbu31.2021.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic travelling salesman problem, where we assume that all objects can move with constant velocity, is considered. To solve this NPhard problem we use a game-theoretic approach and well-known solution concepts of pursuit games. We identify the realizability areas of salesman strategies depending on the initial positions of customers and their velocities. We present different cases of realizability areas of salesman strategies constructing in Python program with several numbers of customers.\",\"PeriodicalId\":235627,\"journal\":{\"name\":\"Contributions to Game Theory and Management\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Game Theory and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu31.2021.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Game Theory and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu31.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了动态旅行商问题,假设所有物体都能匀速运动。为了解决这个NPhard问题,我们使用了博弈论的方法和众所周知的追求游戏的解决概念。我们根据客户的初始位置和他们的速度确定销售策略的可实现区域。我们给出了用Python程序构建具有多个客户的推销员策略可实现区域的不同案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About Construction of Realizability Arias of Salesman Strategies in Dynamic Salesmen Problem
The dynamic travelling salesman problem, where we assume that all objects can move with constant velocity, is considered. To solve this NPhard problem we use a game-theoretic approach and well-known solution concepts of pursuit games. We identify the realizability areas of salesman strategies depending on the initial positions of customers and their velocities. We present different cases of realizability areas of salesman strategies constructing in Python program with several numbers of customers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信