实时密集场景流估计使用RGB-D相机

Jiefei Wang, M. Garratt, S. Anavatti, S. Francis
{"title":"实时密集场景流估计使用RGB-D相机","authors":"Jiefei Wang, M. Garratt, S. Anavatti, S. Francis","doi":"10.1109/ICAMIMIA.2015.7508005","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel framework for dense scene flow estimation using range data from a RGB-D camera. The Lucas/Kanade optical flow technique is extended to three dimensions for estimating dense scene flow. All of the computation is achieved in real time on an AscTec Pelican quadrotor onboard processor. One of the main ideas for our algorithm is to detect and predict the velocity of moving objects from the camera view. To achieve sufficient efficiency for real-time applications, we take advantage of the integral image technique to compute the value of arbitrary rectangular windows quickly. Experimental results of dense scene flow are shown in all 3 axes. Quantitative results are shown and analysed with different resolutions and various lighting conditions.","PeriodicalId":162848,"journal":{"name":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-time dense scene flow estimation using a RGB-D camera\",\"authors\":\"Jiefei Wang, M. Garratt, S. Anavatti, S. Francis\",\"doi\":\"10.1109/ICAMIMIA.2015.7508005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel framework for dense scene flow estimation using range data from a RGB-D camera. The Lucas/Kanade optical flow technique is extended to three dimensions for estimating dense scene flow. All of the computation is achieved in real time on an AscTec Pelican quadrotor onboard processor. One of the main ideas for our algorithm is to detect and predict the velocity of moving objects from the camera view. To achieve sufficient efficiency for real-time applications, we take advantage of the integral image technique to compute the value of arbitrary rectangular windows quickly. Experimental results of dense scene flow are shown in all 3 axes. Quantitative results are shown and analysed with different resolutions and various lighting conditions.\",\"PeriodicalId\":162848,\"journal\":{\"name\":\"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAMIMIA.2015.7508005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAMIMIA.2015.7508005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用RGB-D相机距离数据进行密集场景流估计的新框架。将Lucas/Kanade光流技术扩展到三维,用于估计密集场景流。所有的计算都在AscTec Pelican四旋翼机载处理器上实时完成。我们算法的主要思想之一是从相机视图中检测和预测移动物体的速度。为了在实时应用中获得足够的效率,我们利用积分图像技术快速计算任意矩形窗口的值。密集场景流的实验结果显示在三个轴上。在不同的分辨率和不同的光照条件下给出了定量结果并进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time dense scene flow estimation using a RGB-D camera
In this paper, we present a novel framework for dense scene flow estimation using range data from a RGB-D camera. The Lucas/Kanade optical flow technique is extended to three dimensions for estimating dense scene flow. All of the computation is achieved in real time on an AscTec Pelican quadrotor onboard processor. One of the main ideas for our algorithm is to detect and predict the velocity of moving objects from the camera view. To achieve sufficient efficiency for real-time applications, we take advantage of the integral image technique to compute the value of arbitrary rectangular windows quickly. Experimental results of dense scene flow are shown in all 3 axes. Quantitative results are shown and analysed with different resolutions and various lighting conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信