一种高频回路无功电流最小的三端口谐振固态变压器

W. Malan, D. M. Vilathgamuwa, Geoffrey R Walker, M. Hiller
{"title":"一种高频回路无功电流最小的三端口谐振固态变压器","authors":"W. Malan, D. M. Vilathgamuwa, Geoffrey R Walker, M. Hiller","doi":"10.1109/SPEC.2016.7846129","DOIUrl":null,"url":null,"abstract":"Multi-port dc-ac and dc-dc converters are of great interest for applications where electricity is generated through a variety of energy sources and where energy storage systems are required. In this paper, a three-port, dc-dc-ac Solid State Transformer (SST) is presented that can control the magnitude and direction of power transfer between a battery, a dc bus and the ac grid. The proposed SST features a low magnetic component count, has high power density, high efficiency and provides galvanic isolation between all three ports. The presented topology is operated with a fixed switching frequency and is phase shift modulated. In this paper, a mathematical analysis of the proposed SST is presented along with its sensitivity to parameter variation. The requirements for soft switching is derived and it is demonstrated that the converter can soft switch over large input voltage variation. The modulation parameters are optimized so that the high frequency link currents are minimized while soft switching is maintained. Additionally, in the simulation results, the ac grid current is modulated so that no Power Factor Correction (PFC) circuitry is required.","PeriodicalId":403316,"journal":{"name":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A three port resonant solid state transformer with minimized circulating reactive currents in the high frequency link\",\"authors\":\"W. Malan, D. M. Vilathgamuwa, Geoffrey R Walker, M. Hiller\",\"doi\":\"10.1109/SPEC.2016.7846129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-port dc-ac and dc-dc converters are of great interest for applications where electricity is generated through a variety of energy sources and where energy storage systems are required. In this paper, a three-port, dc-dc-ac Solid State Transformer (SST) is presented that can control the magnitude and direction of power transfer between a battery, a dc bus and the ac grid. The proposed SST features a low magnetic component count, has high power density, high efficiency and provides galvanic isolation between all three ports. The presented topology is operated with a fixed switching frequency and is phase shift modulated. In this paper, a mathematical analysis of the proposed SST is presented along with its sensitivity to parameter variation. The requirements for soft switching is derived and it is demonstrated that the converter can soft switch over large input voltage variation. The modulation parameters are optimized so that the high frequency link currents are minimized while soft switching is maintained. Additionally, in the simulation results, the ac grid current is modulated so that no Power Factor Correction (PFC) circuitry is required.\",\"PeriodicalId\":403316,\"journal\":{\"name\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2016.7846129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2016.7846129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

多端口dc-ac和dc-dc转换器对于通过各种能源发电和需要储能系统的应用非常感兴趣。本文提出了一种三端口的直流-直流-交流固态变压器(SST),它可以控制电池、直流母线和交流电网之间的功率传输的大小和方向。提出的SST具有低磁分量计数,具有高功率密度,高效率,并在所有三个端口之间提供电流隔离。所提出的拓扑以固定的开关频率操作,并进行相移调制。本文对所提出的海表温度及其对参数变化的敏感性进行了数学分析。推导了软开关的要求,并证明了该变换器可以在较大的输入电压变化下实现软开关。在保持软开关的同时,优化了调制参数,使高频链路电流最小。此外,在模拟结果中,交流电网电流被调制,因此不需要功率因数校正(PFC)电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A three port resonant solid state transformer with minimized circulating reactive currents in the high frequency link
Multi-port dc-ac and dc-dc converters are of great interest for applications where electricity is generated through a variety of energy sources and where energy storage systems are required. In this paper, a three-port, dc-dc-ac Solid State Transformer (SST) is presented that can control the magnitude and direction of power transfer between a battery, a dc bus and the ac grid. The proposed SST features a low magnetic component count, has high power density, high efficiency and provides galvanic isolation between all three ports. The presented topology is operated with a fixed switching frequency and is phase shift modulated. In this paper, a mathematical analysis of the proposed SST is presented along with its sensitivity to parameter variation. The requirements for soft switching is derived and it is demonstrated that the converter can soft switch over large input voltage variation. The modulation parameters are optimized so that the high frequency link currents are minimized while soft switching is maintained. Additionally, in the simulation results, the ac grid current is modulated so that no Power Factor Correction (PFC) circuitry is required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信