改进PSO算法中的惯量权方法增强MMSE均衡性

D. Diana, S. Rani
{"title":"改进PSO算法中的惯量权方法增强MMSE均衡性","authors":"D. Diana, S. Rani","doi":"10.1109/ICECCT52121.2021.9616720","DOIUrl":null,"url":null,"abstract":"The need of effective adaptive algorithm with faster convergence rate for rapid time changing channel requires innovative, simple algorithmic improvement in channel equalization. The simple and fast Particle Swarm Optimization (PSO) algorithm provides promising results in equalization under all channel varying conditions. To balance the exploitation and exploration characteristics, the innovative inertia weight parameter selection is demanded. This work proposes a new method including fuzzy complements inertia weight strategy which shows superior performance. The performance is validated through extensive simulations for different inertia weight strategies. Further the simulation result examines the Minimum Mean Square Error (MMSE) on different channel conditions.","PeriodicalId":155129,"journal":{"name":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modified inertia weight approach in PSO algorithm to enhance MMSE Equalization\",\"authors\":\"D. Diana, S. Rani\",\"doi\":\"10.1109/ICECCT52121.2021.9616720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need of effective adaptive algorithm with faster convergence rate for rapid time changing channel requires innovative, simple algorithmic improvement in channel equalization. The simple and fast Particle Swarm Optimization (PSO) algorithm provides promising results in equalization under all channel varying conditions. To balance the exploitation and exploration characteristics, the innovative inertia weight parameter selection is demanded. This work proposes a new method including fuzzy complements inertia weight strategy which shows superior performance. The performance is validated through extensive simulations for different inertia weight strategies. Further the simulation result examines the Minimum Mean Square Error (MMSE) on different channel conditions.\",\"PeriodicalId\":155129,\"journal\":{\"name\":\"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCT52121.2021.9616720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT52121.2021.9616720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

快速时变信道需要有效的、收敛速度更快的自适应算法,这就要求在信道均衡方面进行创新、简单的算法改进。简单快速的粒子群优化算法(PSO)在各种信道变化条件下均能取得良好的均衡效果。为了平衡开采和勘探的特点,需要创新惯性权重参数的选择。本文提出了一种包含模糊互补惯性权重策略的新方法,该方法具有较好的性能。通过对不同惯性权重策略的大量仿真验证了其性能。仿真结果进一步检验了不同信道条件下的最小均方误差(MMSE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified inertia weight approach in PSO algorithm to enhance MMSE Equalization
The need of effective adaptive algorithm with faster convergence rate for rapid time changing channel requires innovative, simple algorithmic improvement in channel equalization. The simple and fast Particle Swarm Optimization (PSO) algorithm provides promising results in equalization under all channel varying conditions. To balance the exploitation and exploration characteristics, the innovative inertia weight parameter selection is demanded. This work proposes a new method including fuzzy complements inertia weight strategy which shows superior performance. The performance is validated through extensive simulations for different inertia weight strategies. Further the simulation result examines the Minimum Mean Square Error (MMSE) on different channel conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信