解剖结构定位模型的一次性学习

R. Donner, H. Bischof
{"title":"解剖结构定位模型的一次性学习","authors":"R. Donner, H. Bischof","doi":"10.1109/ISBI.2013.6556452","DOIUrl":null,"url":null,"abstract":"We propose an approach which allows to localize anatomical landmarks in radiological datasets given only a single manual annotation and set of un-annotated example images. Using top-down image patch regression to obtain potential landmark candidates in the set of training images, a model of the anatomical structure is incrementally enlarged, starting from the single, annotated image, until it encompasses the entire training set. The obtained model then allows to perform highly accurate anatomical structure localization on test data. We report preliminary results on a set of 2D radio-graphs, with a median/mean localization residual of 0.92 mm/1.30 mm. The approach yields very promising localization results, suggesting that is possible to eliminate the tedious manual annotation process still required by state of the art localization approaches.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-shot learning of anatomical structure localization models\",\"authors\":\"R. Donner, H. Bischof\",\"doi\":\"10.1109/ISBI.2013.6556452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach which allows to localize anatomical landmarks in radiological datasets given only a single manual annotation and set of un-annotated example images. Using top-down image patch regression to obtain potential landmark candidates in the set of training images, a model of the anatomical structure is incrementally enlarged, starting from the single, annotated image, until it encompasses the entire training set. The obtained model then allows to perform highly accurate anatomical structure localization on test data. We report preliminary results on a set of 2D radio-graphs, with a median/mean localization residual of 0.92 mm/1.30 mm. The approach yields very promising localization results, suggesting that is possible to eliminate the tedious manual annotation process still required by state of the art localization approaches.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种方法,该方法允许在放射数据集中定位解剖地标,仅给出单个手动注释和一组未注释的示例图像。使用自顶向下的图像补丁回归在训练图像集中获得潜在的地标候选图像,从单个带注释的图像开始,逐步扩大解剖结构模型,直到它包含整个训练集。然后,获得的模型允许在测试数据上执行高精度的解剖结构定位。我们报告了一组二维射线图的初步结果,中位/平均定位残差为0.92 mm/1.30 mm。该方法产生了非常有希望的本地化结果,这表明有可能消除目前最先进的本地化方法仍然需要的繁琐的手动注释过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-shot learning of anatomical structure localization models
We propose an approach which allows to localize anatomical landmarks in radiological datasets given only a single manual annotation and set of un-annotated example images. Using top-down image patch regression to obtain potential landmark candidates in the set of training images, a model of the anatomical structure is incrementally enlarged, starting from the single, annotated image, until it encompasses the entire training set. The obtained model then allows to perform highly accurate anatomical structure localization on test data. We report preliminary results on a set of 2D radio-graphs, with a median/mean localization residual of 0.92 mm/1.30 mm. The approach yields very promising localization results, suggesting that is possible to eliminate the tedious manual annotation process still required by state of the art localization approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信