红外热像成像辐射结构的电场和磁场近场

D. Prost, F. Issac, M. Romier
{"title":"红外热像成像辐射结构的电场和磁场近场","authors":"D. Prost, F. Issac, M. Romier","doi":"10.1109/EMCEurope.2019.8872116","DOIUrl":null,"url":null,"abstract":"The characterization and visualization of the radiated electromagnetic field is a way to diagnose and check microwaves sources, in particular in the space industry. Beyond the traditional 3D scanning of the radiating element, infrared thermography is an alternative way that may give key results in a reduced time, since a few seconds are sufficient to obtain the emitted field map even for a complex multi-cells antenna. This method, called EMIR (ElectroMagnetic InfraRed) has been developed and used for years at ONERA. We have recently extended this technique to the magnetic field, which will lead to a complete characterization of the near field structure. We illustrate this feature in the particular cases of antennas for space application and for a High Impedance Surface (HIS), a metamaterial structure that could be used to reduce the coupling between antennas confined in compact structures (typically size constraints of the spatial components).","PeriodicalId":225005,"journal":{"name":"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Imaging electric and magnetic near field of radiating structures by infrared thermography\",\"authors\":\"D. Prost, F. Issac, M. Romier\",\"doi\":\"10.1109/EMCEurope.2019.8872116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characterization and visualization of the radiated electromagnetic field is a way to diagnose and check microwaves sources, in particular in the space industry. Beyond the traditional 3D scanning of the radiating element, infrared thermography is an alternative way that may give key results in a reduced time, since a few seconds are sufficient to obtain the emitted field map even for a complex multi-cells antenna. This method, called EMIR (ElectroMagnetic InfraRed) has been developed and used for years at ONERA. We have recently extended this technique to the magnetic field, which will lead to a complete characterization of the near field structure. We illustrate this feature in the particular cases of antennas for space application and for a High Impedance Surface (HIS), a metamaterial structure that could be used to reduce the coupling between antennas confined in compact structures (typically size constraints of the spatial components).\",\"PeriodicalId\":225005,\"journal\":{\"name\":\"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCEurope.2019.8872116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope.2019.8872116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

辐射电磁场的表征和可视化是诊断和检查微波源的一种方法,特别是在航天工业中。除了传统的辐射元件3D扫描之外,红外热成像是一种替代方法,可以在更短的时间内给出关键结果,因为即使对于复杂的多单元天线,几秒钟也足以获得发射场图。这种被称为EMIR(电磁红外)的方法已经在ONERA开发和使用了多年。我们最近将这项技术扩展到磁场,这将导致近场结构的完整表征。我们在空间应用天线和高阻抗表面(HIS)的特殊情况下说明了这一特征,高阻抗表面是一种超材料结构,可用于减少被限制在紧凑结构中的天线之间的耦合(通常是空间组件的尺寸限制)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imaging electric and magnetic near field of radiating structures by infrared thermography
The characterization and visualization of the radiated electromagnetic field is a way to diagnose and check microwaves sources, in particular in the space industry. Beyond the traditional 3D scanning of the radiating element, infrared thermography is an alternative way that may give key results in a reduced time, since a few seconds are sufficient to obtain the emitted field map even for a complex multi-cells antenna. This method, called EMIR (ElectroMagnetic InfraRed) has been developed and used for years at ONERA. We have recently extended this technique to the magnetic field, which will lead to a complete characterization of the near field structure. We illustrate this feature in the particular cases of antennas for space application and for a High Impedance Surface (HIS), a metamaterial structure that could be used to reduce the coupling between antennas confined in compact structures (typically size constraints of the spatial components).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信