基于激光雷达的自动驾驶车辆检测框架

Xianjian Jin, Hang Yang, Zhiwei Li
{"title":"基于激光雷达的自动驾驶车辆检测框架","authors":"Xianjian Jin, Hang Yang, Zhiwei Li","doi":"10.1109/CVCI54083.2021.9661148","DOIUrl":null,"url":null,"abstract":"Stable and efficient environmental perception in autonomous driving is an important prerequisite for path planning and behavior prediction. This paper proposes a vehicle identification framework based on LiDAR. After using the ground segmentation algorithm based on Gaussian process regression to complete high-quality ground segmentation, the adaptively density-based spatial clustering of applications with noise (A-DBSCAN) algorithm is used to cluster the remaining obstacle point clouds, and then the improved L-Shape algorithm is used for bounding box fitting. The experimental results based on the KITTI data set show that the framework has good stability under simple working conditions.","PeriodicalId":419836,"journal":{"name":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":"123 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vehicle Detection Framework Based on LiDAR for Autonoumous Driving\",\"authors\":\"Xianjian Jin, Hang Yang, Zhiwei Li\",\"doi\":\"10.1109/CVCI54083.2021.9661148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stable and efficient environmental perception in autonomous driving is an important prerequisite for path planning and behavior prediction. This paper proposes a vehicle identification framework based on LiDAR. After using the ground segmentation algorithm based on Gaussian process regression to complete high-quality ground segmentation, the adaptively density-based spatial clustering of applications with noise (A-DBSCAN) algorithm is used to cluster the remaining obstacle point clouds, and then the improved L-Shape algorithm is used for bounding box fitting. The experimental results based on the KITTI data set show that the framework has good stability under simple working conditions.\",\"PeriodicalId\":419836,\"journal\":{\"name\":\"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":\"123 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI54083.2021.9661148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI54083.2021.9661148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

稳定、高效的环境感知是自动驾驶进行路径规划和行为预测的重要前提。提出了一种基于激光雷达的车辆识别框架。在使用基于高斯过程回归的地面分割算法完成高质量的地面分割后,使用基于噪声应用的自适应密度空间聚类(A-DBSCAN)算法对剩余障碍点云进行聚类,然后使用改进的L-Shape算法进行边界盒拟合。基于KITTI数据集的实验结果表明,该框架在简单工况下具有良好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Detection Framework Based on LiDAR for Autonoumous Driving
Stable and efficient environmental perception in autonomous driving is an important prerequisite for path planning and behavior prediction. This paper proposes a vehicle identification framework based on LiDAR. After using the ground segmentation algorithm based on Gaussian process regression to complete high-quality ground segmentation, the adaptively density-based spatial clustering of applications with noise (A-DBSCAN) algorithm is used to cluster the remaining obstacle point clouds, and then the improved L-Shape algorithm is used for bounding box fitting. The experimental results based on the KITTI data set show that the framework has good stability under simple working conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信