风电系统最大功率点跟踪算法研究

M. A. Abdullah, A. Yatim, Chee Wei Tan
{"title":"风电系统最大功率点跟踪算法研究","authors":"M. A. Abdullah, A. Yatim, Chee Wei Tan","doi":"10.1109/CET.2011.6041484","DOIUrl":null,"url":null,"abstract":"This paper reviews and studies the state-of the-art of available maximum power point tracking (MPPT) algorithms. Due to the nature of the wind that is instantaneously changing, hence, there is only one optimal generator speed is desirable at one time that ensures the maximum energy is harvested from the available wind. Therefore, it is essential to include a controller that is able to track the maximum peak regardless of any wind speed. The available maximum power point tracking (MPPT) algorithms can be classified according to the control variable, namely with and without sensor, and also the technique used to locate the maximum peak. A comparison has been made on the performance of the selected MPPT algorithms on the basis of various speed responses and the ability to achieve the maximum energy yield. The tracking performance is performed by simulating wind energy system using MATLAB/Simulink simulation package. Besides that, a brief and critical discussion is made on the differences of available MPPT algorithms for wind energy system. Finally, a conclusion is drawn.","PeriodicalId":360345,"journal":{"name":"2011 IEEE Conference on Clean Energy and Technology (CET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":"{\"title\":\"A study of maximum power point tracking algorithms for wind energy system\",\"authors\":\"M. A. Abdullah, A. Yatim, Chee Wei Tan\",\"doi\":\"10.1109/CET.2011.6041484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews and studies the state-of the-art of available maximum power point tracking (MPPT) algorithms. Due to the nature of the wind that is instantaneously changing, hence, there is only one optimal generator speed is desirable at one time that ensures the maximum energy is harvested from the available wind. Therefore, it is essential to include a controller that is able to track the maximum peak regardless of any wind speed. The available maximum power point tracking (MPPT) algorithms can be classified according to the control variable, namely with and without sensor, and also the technique used to locate the maximum peak. A comparison has been made on the performance of the selected MPPT algorithms on the basis of various speed responses and the ability to achieve the maximum energy yield. The tracking performance is performed by simulating wind energy system using MATLAB/Simulink simulation package. Besides that, a brief and critical discussion is made on the differences of available MPPT algorithms for wind energy system. Finally, a conclusion is drawn.\",\"PeriodicalId\":360345,\"journal\":{\"name\":\"2011 IEEE Conference on Clean Energy and Technology (CET)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"133\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Conference on Clean Energy and Technology (CET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CET.2011.6041484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Conference on Clean Energy and Technology (CET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CET.2011.6041484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

摘要

本文综述和研究了现有最大功率点跟踪(MPPT)算法的最新进展。由于风的性质是瞬间变化的,因此,在同一时间只有一个最佳的发电机速度是理想的,以确保从可用的风中获得最大的能量。因此,无论风速如何,都必须包含一个能够跟踪最大峰值的控制器。现有的最大功率点跟踪(MPPT)算法可以根据控制变量进行分类,即有传感器和没有传感器,以及用于定位最大峰值的技术。根据不同的速度响应和实现最大发电量的能力,对所选的MPPT算法的性能进行了比较。利用MATLAB/Simulink仿真包对风能系统进行仿真,对跟踪性能进行了验证。此外,对风能系统中可用的MPPT算法的差异进行了简要而关键的讨论。最后,得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of maximum power point tracking algorithms for wind energy system
This paper reviews and studies the state-of the-art of available maximum power point tracking (MPPT) algorithms. Due to the nature of the wind that is instantaneously changing, hence, there is only one optimal generator speed is desirable at one time that ensures the maximum energy is harvested from the available wind. Therefore, it is essential to include a controller that is able to track the maximum peak regardless of any wind speed. The available maximum power point tracking (MPPT) algorithms can be classified according to the control variable, namely with and without sensor, and also the technique used to locate the maximum peak. A comparison has been made on the performance of the selected MPPT algorithms on the basis of various speed responses and the ability to achieve the maximum energy yield. The tracking performance is performed by simulating wind energy system using MATLAB/Simulink simulation package. Besides that, a brief and critical discussion is made on the differences of available MPPT algorithms for wind energy system. Finally, a conclusion is drawn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信