{"title":"用于非均匀量化卷积神经网络的硅光子加速器","authors":"Febin P. Sunny, M. Nikdast, S. Pasricha","doi":"10.1145/3526241.3530364","DOIUrl":null,"url":null,"abstract":"Parameter quantization in convolutional neural networks (CNNs) can help generate efficient models with lower memory footprint and computational complexity. But, homogeneous quantization can result in significant degradation of CNN model accuracy. In contrast, heterogeneous quantization represents a promising approach to realize compact, quantized models with higher inference accuracies. In this paper, we propose HQNNA, a CNN accelerator based on non-coherent silicon photonics that can accelerate both homogeneously quantized and heterogeneously quantized CNN models. Our analyses show that HQNNA achieves up to 73.8x better energy-per-bit and 159.5x better throughput-energy efficiency than state-of-the-art photonic CNN accelerators","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Silicon Photonic Accelerator for Convolutional Neural Networks with Heterogeneous Quantization\",\"authors\":\"Febin P. Sunny, M. Nikdast, S. Pasricha\",\"doi\":\"10.1145/3526241.3530364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter quantization in convolutional neural networks (CNNs) can help generate efficient models with lower memory footprint and computational complexity. But, homogeneous quantization can result in significant degradation of CNN model accuracy. In contrast, heterogeneous quantization represents a promising approach to realize compact, quantized models with higher inference accuracies. In this paper, we propose HQNNA, a CNN accelerator based on non-coherent silicon photonics that can accelerate both homogeneously quantized and heterogeneously quantized CNN models. Our analyses show that HQNNA achieves up to 73.8x better energy-per-bit and 159.5x better throughput-energy efficiency than state-of-the-art photonic CNN accelerators\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Silicon Photonic Accelerator for Convolutional Neural Networks with Heterogeneous Quantization
Parameter quantization in convolutional neural networks (CNNs) can help generate efficient models with lower memory footprint and computational complexity. But, homogeneous quantization can result in significant degradation of CNN model accuracy. In contrast, heterogeneous quantization represents a promising approach to realize compact, quantized models with higher inference accuracies. In this paper, we propose HQNNA, a CNN accelerator based on non-coherent silicon photonics that can accelerate both homogeneously quantized and heterogeneously quantized CNN models. Our analyses show that HQNNA achieves up to 73.8x better energy-per-bit and 159.5x better throughput-energy efficiency than state-of-the-art photonic CNN accelerators