Wenting Zheng, R. A. Popa, Joseph Gonzalez, I. Stoica
{"title":"线性模型的恶意安全合作学习","authors":"Wenting Zheng, R. A. Popa, Joseph Gonzalez, I. Stoica","doi":"10.1109/SP.2019.00045","DOIUrl":null,"url":null,"abstract":"Many organizations wish to collaboratively train machine learning models on their combined datasets for a common benefit (e.g., better medical research, or fraud detection). However, they often cannot share their plaintext datasets due to privacy concerns and/or business competition. In this paper, we design and build Helen, a system that allows multiple parties to train a linear model without revealing their data, a setting we call coopetitive learning. Compared to prior secure training systems, Helen protects against a much stronger adversary who is malicious and can compromise m−1 out of m parties. Our evaluation shows that Helen can achieve up to five orders of magnitude of performance improvement when compared to training using an existing state-of-the-art secure multi-party computation framework.","PeriodicalId":272713,"journal":{"name":"2019 IEEE Symposium on Security and Privacy (SP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"Helen: Maliciously Secure Coopetitive Learning for Linear Models\",\"authors\":\"Wenting Zheng, R. A. Popa, Joseph Gonzalez, I. Stoica\",\"doi\":\"10.1109/SP.2019.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many organizations wish to collaboratively train machine learning models on their combined datasets for a common benefit (e.g., better medical research, or fraud detection). However, they often cannot share their plaintext datasets due to privacy concerns and/or business competition. In this paper, we design and build Helen, a system that allows multiple parties to train a linear model without revealing their data, a setting we call coopetitive learning. Compared to prior secure training systems, Helen protects against a much stronger adversary who is malicious and can compromise m−1 out of m parties. Our evaluation shows that Helen can achieve up to five orders of magnitude of performance improvement when compared to training using an existing state-of-the-art secure multi-party computation framework.\",\"PeriodicalId\":272713,\"journal\":{\"name\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP.2019.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2019.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Helen: Maliciously Secure Coopetitive Learning for Linear Models
Many organizations wish to collaboratively train machine learning models on their combined datasets for a common benefit (e.g., better medical research, or fraud detection). However, they often cannot share their plaintext datasets due to privacy concerns and/or business competition. In this paper, we design and build Helen, a system that allows multiple parties to train a linear model without revealing their data, a setting we call coopetitive learning. Compared to prior secure training systems, Helen protects against a much stronger adversary who is malicious and can compromise m−1 out of m parties. Our evaluation shows that Helen can achieve up to five orders of magnitude of performance improvement when compared to training using an existing state-of-the-art secure multi-party computation framework.