基于上下文的递归神经网络纠错方案用于弹性和高效的片内数据传输

Naoto Sugaya, M. Natsui, T. Hanyu
{"title":"基于上下文的递归神经网络纠错方案用于弹性和高效的片内数据传输","authors":"Naoto Sugaya, M. Natsui, T. Hanyu","doi":"10.1109/ISMVL.2016.42","DOIUrl":null,"url":null,"abstract":"An error correction scheme utilizing a brain-inspired learning algorithm, called Recurrent Neural Network (RNN), is proposed for resilient and efficient intra-chip data transmission. RNN has a feature to find partially-clustered time-series data stream from an input data stream and predict the next input data from previous input data stream, which can be utilized for realizing an error correction corresponding to the \"context\" of the data stream. Through the evaluation of intra-chip data transmission in a general-purpose 32-bit microprocessor, it is demonstrated that the proposed scheme performs 95.9% error reduction with 2-times better data transfer efficiency and 94.2% error reduction with 4-times better data transfer efficiency compared with a conventional error correction scheme.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Context-Based Error Correction Scheme Using Recurrent Neural Network for Resilient and Efficient Intra-Chip Data Transmission\",\"authors\":\"Naoto Sugaya, M. Natsui, T. Hanyu\",\"doi\":\"10.1109/ISMVL.2016.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An error correction scheme utilizing a brain-inspired learning algorithm, called Recurrent Neural Network (RNN), is proposed for resilient and efficient intra-chip data transmission. RNN has a feature to find partially-clustered time-series data stream from an input data stream and predict the next input data from previous input data stream, which can be utilized for realizing an error correction corresponding to the \\\"context\\\" of the data stream. Through the evaluation of intra-chip data transmission in a general-purpose 32-bit microprocessor, it is demonstrated that the proposed scheme performs 95.9% error reduction with 2-times better data transfer efficiency and 94.2% error reduction with 4-times better data transfer efficiency compared with a conventional error correction scheme.\",\"PeriodicalId\":246194,\"journal\":{\"name\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2016.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种利用大脑启发学习算法的纠错方案,称为递归神经网络(RNN),用于弹性和高效的芯片内数据传输。RNN具有从输入数据流中找到部分聚类的时间序列数据流,并从之前的输入数据流中预测下一个输入数据的特点,可以利用这一点实现与数据流的“上下文”相对应的纠错。通过对通用32位微处理器芯片内数据传输的评估,表明该方案与传统纠错方案相比,误差减少95.9%,数据传输效率提高2倍,误差减少94.2%,数据传输效率提高4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Based Error Correction Scheme Using Recurrent Neural Network for Resilient and Efficient Intra-Chip Data Transmission
An error correction scheme utilizing a brain-inspired learning algorithm, called Recurrent Neural Network (RNN), is proposed for resilient and efficient intra-chip data transmission. RNN has a feature to find partially-clustered time-series data stream from an input data stream and predict the next input data from previous input data stream, which can be utilized for realizing an error correction corresponding to the "context" of the data stream. Through the evaluation of intra-chip data transmission in a general-purpose 32-bit microprocessor, it is demonstrated that the proposed scheme performs 95.9% error reduction with 2-times better data transfer efficiency and 94.2% error reduction with 4-times better data transfer efficiency compared with a conventional error correction scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信