多变量植物的敏感性权衡

S. O'Young, B. Francis
{"title":"多变量植物的敏感性权衡","authors":"S. O'Young, B. Francis","doi":"10.1109/CDC.1984.272362","DOIUrl":null,"url":null,"abstract":"This paper gives a characterization of the smallest upper bound on the norm of the sensitivity matrix over a frequency interval, with the constraint that the norm remain bounded at all frequencies. The matrix Nevanlinna-Pick interpolation theory is applied to give a necessary and sufficient condition for the existence of a sensitivity matrix meeting the upper bound conditions on the j¿-axis, and the matrix Nevanlinna-Pick algorithm is used to compute the bounds. A scalar example is also presented to demonstrate the trade-offs between the bounds inside and outside a given operating frequency band.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Sensitivity trade-offs for multivariable plants\",\"authors\":\"S. O'Young, B. Francis\",\"doi\":\"10.1109/CDC.1984.272362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives a characterization of the smallest upper bound on the norm of the sensitivity matrix over a frequency interval, with the constraint that the norm remain bounded at all frequencies. The matrix Nevanlinna-Pick interpolation theory is applied to give a necessary and sufficient condition for the existence of a sensitivity matrix meeting the upper bound conditions on the j¿-axis, and the matrix Nevanlinna-Pick algorithm is used to compute the bounds. A scalar example is also presented to demonstrate the trade-offs between the bounds inside and outside a given operating frequency band.\",\"PeriodicalId\":269680,\"journal\":{\"name\":\"The 23rd IEEE Conference on Decision and Control\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1984.272362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文给出了灵敏度矩阵在一个频率区间上的范数的最小上界的一个表征,其约束条件是范数在所有频率上保持有界。利用矩阵Nevanlinna-Pick插值理论,给出了在j -轴上存在满足上界条件的灵敏度矩阵的充分必要条件,并用矩阵Nevanlinna-Pick算法计算了灵敏度矩阵的上界。还给出了一个标量示例来演示给定工作频带内外边界之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity trade-offs for multivariable plants
This paper gives a characterization of the smallest upper bound on the norm of the sensitivity matrix over a frequency interval, with the constraint that the norm remain bounded at all frequencies. The matrix Nevanlinna-Pick interpolation theory is applied to give a necessary and sufficient condition for the existence of a sensitivity matrix meeting the upper bound conditions on the j¿-axis, and the matrix Nevanlinna-Pick algorithm is used to compute the bounds. A scalar example is also presented to demonstrate the trade-offs between the bounds inside and outside a given operating frequency band.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信