该算法使用NAIVE BAYES来预测ci犀牛PUSKESMAS的伤寒症状

Abdullah Khabari Kamil, Resti Yulistria, Apip Supiandi, Gunawan Gunawan
{"title":"该算法使用NAIVE BAYES来预测ci犀牛PUSKESMAS的伤寒症状","authors":"Abdullah Khabari Kamil, Resti Yulistria, Apip Supiandi, Gunawan Gunawan","doi":"10.31294/larik.v1i1.499","DOIUrl":null,"url":null,"abstract":"Demam tifoid merupakan salah satu penyakit infeksi yang masih menjadi masalah kesehatan di negara berkembang, khususnya di Indonesia. Salmonella typhi merupakan bakteri penyebab demam tifoid yang dapat ditransmisikan melalui makanan maupun minuman terkontaminasi oleh feses atau urin dari orang yang telah terinfeksi. Langkah pertama dalam pengelolaan penyakit demam tifoid adalah penetapan diagnosis yang tepat. Untuk mengurangi kesalahan deteksi dan menghindari keterlambatan diagnosis penderita demam tifoid, dapat dilakukan penerapan dan pemanfaatan teknik data mining. Salah satu algoritma yang dapat diterapkan adalah Naive Bayes Classifier, dengan diterapkannya algoritma Naive Bayes Classifier ini diharapkan para penderita dapat mengetahui kondisi kesehatannya dari demam tifoid yang mungkin saja terjadi, sehingga dapat langsung melakukan tindakan sebagai usaha untuk meminimalisir gejala yang terjadi dan diharapkan tindakan sejak dini ini membuat gejala lain yang akan terjadi justru tidak terjadi dan gejala yang ada berkurang. Naïve Bayes Classifier yang dikenal merupakan salah satu model klasifikasi yang baik dan sering digunakan. Hasil dari penelitian ini mendapatkan akurasi sebesar 93,71%. menggunakan rapid miner 5.2 dengan 142 dataset.","PeriodicalId":446789,"journal":{"name":"Jurnal Larik: Ladang Artikel Ilmu Komputer","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN ALGORITMA NAÏVE BAYES UNTUK MEMPREDIKSI GEJALA DEMAM TIFOID PADA PUSKESMAS CIBADAK\",\"authors\":\"Abdullah Khabari Kamil, Resti Yulistria, Apip Supiandi, Gunawan Gunawan\",\"doi\":\"10.31294/larik.v1i1.499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demam tifoid merupakan salah satu penyakit infeksi yang masih menjadi masalah kesehatan di negara berkembang, khususnya di Indonesia. Salmonella typhi merupakan bakteri penyebab demam tifoid yang dapat ditransmisikan melalui makanan maupun minuman terkontaminasi oleh feses atau urin dari orang yang telah terinfeksi. Langkah pertama dalam pengelolaan penyakit demam tifoid adalah penetapan diagnosis yang tepat. Untuk mengurangi kesalahan deteksi dan menghindari keterlambatan diagnosis penderita demam tifoid, dapat dilakukan penerapan dan pemanfaatan teknik data mining. Salah satu algoritma yang dapat diterapkan adalah Naive Bayes Classifier, dengan diterapkannya algoritma Naive Bayes Classifier ini diharapkan para penderita dapat mengetahui kondisi kesehatannya dari demam tifoid yang mungkin saja terjadi, sehingga dapat langsung melakukan tindakan sebagai usaha untuk meminimalisir gejala yang terjadi dan diharapkan tindakan sejak dini ini membuat gejala lain yang akan terjadi justru tidak terjadi dan gejala yang ada berkurang. Naïve Bayes Classifier yang dikenal merupakan salah satu model klasifikasi yang baik dan sering digunakan. Hasil dari penelitian ini mendapatkan akurasi sebesar 93,71%. menggunakan rapid miner 5.2 dengan 142 dataset.\",\"PeriodicalId\":446789,\"journal\":{\"name\":\"Jurnal Larik: Ladang Artikel Ilmu Komputer\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Larik: Ladang Artikel Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31294/larik.v1i1.499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Larik: Ladang Artikel Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/larik.v1i1.499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伤寒是发展中国家(尤其是印度尼西亚)仍然是一种传染病。沙门氏菌是一种通过食物或饮料传播的伤寒细菌,被感染的人的粪便或尿液污染。治疗伤寒发烧的第一步是确定正确的诊断。为了减少检测错误,避免伤寒患者的诊断延误,可以应用和利用数据挖掘技术。可以应用的算法是天真贝叶斯之一的天真贝叶斯算法Classifier, Classifier这个预期患者可以知道伤寒的健康状况有可能发生,所以可以直接采取预期为努力减少的症状发生,及早行动,这让其他症状反而会发生不发生,有减少的症状。著名的天真的贝斯经典模型是一个很好的分类模型,经常使用。本研究的结果是93.71%的准确率。使用rapid miner 5.2,有142个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN ALGORITMA NAÏVE BAYES UNTUK MEMPREDIKSI GEJALA DEMAM TIFOID PADA PUSKESMAS CIBADAK
Demam tifoid merupakan salah satu penyakit infeksi yang masih menjadi masalah kesehatan di negara berkembang, khususnya di Indonesia. Salmonella typhi merupakan bakteri penyebab demam tifoid yang dapat ditransmisikan melalui makanan maupun minuman terkontaminasi oleh feses atau urin dari orang yang telah terinfeksi. Langkah pertama dalam pengelolaan penyakit demam tifoid adalah penetapan diagnosis yang tepat. Untuk mengurangi kesalahan deteksi dan menghindari keterlambatan diagnosis penderita demam tifoid, dapat dilakukan penerapan dan pemanfaatan teknik data mining. Salah satu algoritma yang dapat diterapkan adalah Naive Bayes Classifier, dengan diterapkannya algoritma Naive Bayes Classifier ini diharapkan para penderita dapat mengetahui kondisi kesehatannya dari demam tifoid yang mungkin saja terjadi, sehingga dapat langsung melakukan tindakan sebagai usaha untuk meminimalisir gejala yang terjadi dan diharapkan tindakan sejak dini ini membuat gejala lain yang akan terjadi justru tidak terjadi dan gejala yang ada berkurang. Naïve Bayes Classifier yang dikenal merupakan salah satu model klasifikasi yang baik dan sering digunakan. Hasil dari penelitian ini mendapatkan akurasi sebesar 93,71%. menggunakan rapid miner 5.2 dengan 142 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信