奔腾(R) 4乘法器的正式验证

R. Kaivola, N. Narasimhan
{"title":"奔腾(R) 4乘法器的正式验证","authors":"R. Kaivola, N. Narasimhan","doi":"10.1109/HLDVT.2001.972817","DOIUrl":null,"url":null,"abstract":"We present the formal verification of the floating-point multiplier in the Intel IA-32 Pentium(R)4 microprocessor. The verification is based on a combination of theorem-proving and model-checking tasks performed in the Forte hardware verification environment. The tasks are tightly integrated to accomplish complete verification of the multiplier hardware coupled with the rounder logic. The approach does not rely on specialized representations like binary moment diagrams or its variants.","PeriodicalId":188469,"journal":{"name":"Sixth IEEE International High-Level Design Validation and Test Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Formal verification of the Pentium(R) 4 multiplier\",\"authors\":\"R. Kaivola, N. Narasimhan\",\"doi\":\"10.1109/HLDVT.2001.972817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the formal verification of the floating-point multiplier in the Intel IA-32 Pentium(R)4 microprocessor. The verification is based on a combination of theorem-proving and model-checking tasks performed in the Forte hardware verification environment. The tasks are tightly integrated to accomplish complete verification of the multiplier hardware coupled with the rounder logic. The approach does not rely on specialized representations like binary moment diagrams or its variants.\",\"PeriodicalId\":188469,\"journal\":{\"name\":\"Sixth IEEE International High-Level Design Validation and Test Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth IEEE International High-Level Design Validation and Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HLDVT.2001.972817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth IEEE International High-Level Design Validation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2001.972817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文给出了浮点乘法器在Intel IA-32 Pentium(R)4微处理器上的形式化验证。验证是基于在Forte硬件验证环境中执行的定理证明和模型检查任务的组合。这些任务紧密地集成在一起,以完成对乘法器硬件和圆角逻辑的完整验证。该方法不依赖于二进制矩图或其变体等专门的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal verification of the Pentium(R) 4 multiplier
We present the formal verification of the floating-point multiplier in the Intel IA-32 Pentium(R)4 microprocessor. The verification is based on a combination of theorem-proving and model-checking tasks performed in the Forte hardware verification environment. The tasks are tightly integrated to accomplish complete verification of the multiplier hardware coupled with the rounder logic. The approach does not rely on specialized representations like binary moment diagrams or its variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信