用2D 1/2视觉伺服技术对未知物体进行粗标定相机定位

E. Malis, F. Chaumette, S. Boudet
{"title":"用2D 1/2视觉伺服技术对未知物体进行粗标定相机定位","authors":"E. Malis, F. Chaumette, S. Boudet","doi":"10.1109/ROBOT.1998.677293","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new vision-based robot control approach halfway between the classical position-based and image-based visual servoings. It allows to avoid their respective disadvantages. The homography between some planar feature points extracted from two images (corresponding to the current and desired camera poses) is computed at each iteration. Then, an approximate partial-pose, where the translational term is known only up to a scale factor, is deduced, from which can be designed a closed-loop control law controlling the six camera DOF. Contrarily to the position-based visual servoing, our scheme does not need any geometric 3D model of the object. Furthermore and contrarily to the image-based visual servoing, our approach ensures the convergence of the control law in all the task space.","PeriodicalId":272503,"journal":{"name":"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Positioning a coarse-calibrated camera with respect to an unknown object by 2D 1/2 visual servoing\",\"authors\":\"E. Malis, F. Chaumette, S. Boudet\",\"doi\":\"10.1109/ROBOT.1998.677293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new vision-based robot control approach halfway between the classical position-based and image-based visual servoings. It allows to avoid their respective disadvantages. The homography between some planar feature points extracted from two images (corresponding to the current and desired camera poses) is computed at each iteration. Then, an approximate partial-pose, where the translational term is known only up to a scale factor, is deduced, from which can be designed a closed-loop control law controlling the six camera DOF. Contrarily to the position-based visual servoing, our scheme does not need any geometric 3D model of the object. Furthermore and contrarily to the image-based visual servoing, our approach ensures the convergence of the control law in all the task space.\",\"PeriodicalId\":272503,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1998.677293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1998.677293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文提出了一种介于传统的基于位置和基于图像的视觉伺服之间的基于视觉的机器人控制方法。它可以避免它们各自的缺点。在每次迭代中计算从两幅图像中提取的平面特征点(对应于当前和期望的相机姿态)之间的单应性。然后,推导出平移项仅在一个比例因子范围内已知的近似偏位姿,并以此为基础设计出控制六相机自由度的闭环控制律。与基于位置的视觉伺服不同,我们的方案不需要物体的任何几何三维模型。此外,与基于图像的视觉伺服不同,该方法保证了控制律在所有任务空间的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positioning a coarse-calibrated camera with respect to an unknown object by 2D 1/2 visual servoing
In this paper we propose a new vision-based robot control approach halfway between the classical position-based and image-based visual servoings. It allows to avoid their respective disadvantages. The homography between some planar feature points extracted from two images (corresponding to the current and desired camera poses) is computed at each iteration. Then, an approximate partial-pose, where the translational term is known only up to a scale factor, is deduced, from which can be designed a closed-loop control law controlling the six camera DOF. Contrarily to the position-based visual servoing, our scheme does not need any geometric 3D model of the object. Furthermore and contrarily to the image-based visual servoing, our approach ensures the convergence of the control law in all the task space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信