小波图像阈值去噪研究

Chenggang Zhen, Yingmei Su
{"title":"小波图像阈值去噪研究","authors":"Chenggang Zhen, Yingmei Su","doi":"10.1109/ICFPEE.2010.8","DOIUrl":null,"url":null,"abstract":"The purpose of image denoising is to restore the original image from the observed noisy image, under the conditions of meeting the minimum mean-square error criteria. In this paper, it summarized the basic principles of the wavelet threshold de-noising and various factors that affect the denoising performace in a complete de-noising algorithms, and analyzed several commonly used threshold de-noising methods and experiment with the Lena image. It provided the basis of selection and improvement for the actual image processing de-noising method.","PeriodicalId":412111,"journal":{"name":"2010 International Conference on Future Power and Energy Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Research on Wavelet Image Threshold De-noising\",\"authors\":\"Chenggang Zhen, Yingmei Su\",\"doi\":\"10.1109/ICFPEE.2010.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of image denoising is to restore the original image from the observed noisy image, under the conditions of meeting the minimum mean-square error criteria. In this paper, it summarized the basic principles of the wavelet threshold de-noising and various factors that affect the denoising performace in a complete de-noising algorithms, and analyzed several commonly used threshold de-noising methods and experiment with the Lena image. It provided the basis of selection and improvement for the actual image processing de-noising method.\",\"PeriodicalId\":412111,\"journal\":{\"name\":\"2010 International Conference on Future Power and Energy Engineering\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Future Power and Energy Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPEE.2010.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Future Power and Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPEE.2010.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

图像去噪的目的是在满足最小均方误差准则的条件下,从观测到的噪声图像中恢复原始图像。本文总结了小波阈值去噪的基本原理和影响去噪性能的各种因素,在完整的去噪算法中,分析了几种常用的阈值去噪方法,并对Lena图像进行了实验。为实际图像处理降噪方法的选择和改进提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Wavelet Image Threshold De-noising
The purpose of image denoising is to restore the original image from the observed noisy image, under the conditions of meeting the minimum mean-square error criteria. In this paper, it summarized the basic principles of the wavelet threshold de-noising and various factors that affect the denoising performace in a complete de-noising algorithms, and analyzed several commonly used threshold de-noising methods and experiment with the Lena image. It provided the basis of selection and improvement for the actual image processing de-noising method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信