{"title":"复杂浑浊介质中光辐射传播统一建模的概念","authors":"I. Meglinski, M. Kirillin","doi":"10.1117/12.816618","DOIUrl":null,"url":null,"abstract":"Multipurpose unified Monte Carlo (MC) based model is developed for adequate simulation of various aspects of optical/ laser radiation propagation within biological tissues. The modeling is aimed to provide predictive information to optimize clinical/biomedical optical diagnostic systems and improve interpretation of the experimental results in biomedical diagnostics. Complex structure of biological tissues in terms of scattering and absorption is presented on the example of human skin. Validation and verification are performed against the tabulated data, theoretical predictions, and experiments. We demonstrate the use of the model to imitate 2-D polarization-sensitive OCT images with non-planar boundaries of layers in the medium like a human skin. The performances of the model are demonstrated both for conventional and polarization-sensitive OCT modalities.","PeriodicalId":273853,"journal":{"name":"International Conference on Advanced Optical Materials and Devices","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The concept of a unified modeling of optical radiation propagation in complex turbid media\",\"authors\":\"I. Meglinski, M. Kirillin\",\"doi\":\"10.1117/12.816618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multipurpose unified Monte Carlo (MC) based model is developed for adequate simulation of various aspects of optical/ laser radiation propagation within biological tissues. The modeling is aimed to provide predictive information to optimize clinical/biomedical optical diagnostic systems and improve interpretation of the experimental results in biomedical diagnostics. Complex structure of biological tissues in terms of scattering and absorption is presented on the example of human skin. Validation and verification are performed against the tabulated data, theoretical predictions, and experiments. We demonstrate the use of the model to imitate 2-D polarization-sensitive OCT images with non-planar boundaries of layers in the medium like a human skin. The performances of the model are demonstrated both for conventional and polarization-sensitive OCT modalities.\",\"PeriodicalId\":273853,\"journal\":{\"name\":\"International Conference on Advanced Optical Materials and Devices\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Optical Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.816618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Optical Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.816618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The concept of a unified modeling of optical radiation propagation in complex turbid media
Multipurpose unified Monte Carlo (MC) based model is developed for adequate simulation of various aspects of optical/ laser radiation propagation within biological tissues. The modeling is aimed to provide predictive information to optimize clinical/biomedical optical diagnostic systems and improve interpretation of the experimental results in biomedical diagnostics. Complex structure of biological tissues in terms of scattering and absorption is presented on the example of human skin. Validation and verification are performed against the tabulated data, theoretical predictions, and experiments. We demonstrate the use of the model to imitate 2-D polarization-sensitive OCT images with non-planar boundaries of layers in the medium like a human skin. The performances of the model are demonstrated both for conventional and polarization-sensitive OCT modalities.