双参数互补指数功率分布的贝叶斯分析

A. Chaudhary
{"title":"双参数互补指数功率分布的贝叶斯分析","authors":"A. Chaudhary","doi":"10.3126/nccj.v3i1.20244","DOIUrl":null,"url":null,"abstract":"In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of CEP distribution based on a complete sample. A procedure is developed to obtain Bayes estimates of the parameters of the CEP distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. The MCMC methods have been shown to be easier to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. The R functions are developed to study the statistical properties, model validation and comparison tools of the distribution and the output analysis of MCMC samples generated from OpenBUGS. A real data set is considered for illustration under uniform and gamma sets of priors. NCC Journal Vol. 3, No. 1, 2018,   Page: 1-23","PeriodicalId":403873,"journal":{"name":"NCC Journal","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Analysis of Two Parameter Complementary Exponential Power Distribution\",\"authors\":\"A. Chaudhary\",\"doi\":\"10.3126/nccj.v3i1.20244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of CEP distribution based on a complete sample. A procedure is developed to obtain Bayes estimates of the parameters of the CEP distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. The MCMC methods have been shown to be easier to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. The R functions are developed to study the statistical properties, model validation and comparison tools of the distribution and the output analysis of MCMC samples generated from OpenBUGS. A real data set is considered for illustration under uniform and gamma sets of priors. NCC Journal Vol. 3, No. 1, 2018,   Page: 1-23\",\"PeriodicalId\":403873,\"journal\":{\"name\":\"NCC Journal\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCC Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/nccj.v3i1.20244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCC Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/nccj.v3i1.20244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用马尔可夫链蒙特卡罗(MCMC)方法在完整样本的基础上估计CEP分布的参数。在使用马尔可夫链蒙特卡罗(MCMC)方法进行贝叶斯分析的OpenBUGS软件中,开发了一个程序,利用Markov Chain Monte Carlo (MCMC)模拟方法获得CEP分布参数的贝叶斯估计。MCMC方法易于计算实现,估计值总是存在且具有统计一致性,其概率区间易于构造。开发R函数,研究OpenBUGS生成的MCMC样本分布和输出分析的统计特性、模型验证和比较工具。考虑在均匀和伽玛先验集下的真实数据集进行说明。中国工程学报,2018年第1期,第1-23页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Analysis of Two Parameter Complementary Exponential Power Distribution
In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of CEP distribution based on a complete sample. A procedure is developed to obtain Bayes estimates of the parameters of the CEP distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. The MCMC methods have been shown to be easier to implement computationally, the estimates always exist and are statistically consistent, and their probability intervals are convenient to construct. The R functions are developed to study the statistical properties, model validation and comparison tools of the distribution and the output analysis of MCMC samples generated from OpenBUGS. A real data set is considered for illustration under uniform and gamma sets of priors. NCC Journal Vol. 3, No. 1, 2018,   Page: 1-23
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信