{"title":"不同测试集对质量水平预测的影响:何时80%优于90%?","authors":"P. Maxwell, R. Aitken, V. Johansen, I. Chiang","doi":"10.1109/TEST.1991.519695","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of stuck-at fault coverage as a means of determining quality levels. Data from a part tested with both functional and scan tests is analyzed and compared to three existing theories. It is shown that reasonable predictions of quality level are possible for the functional tests, but that scan tests produce significantly worse quality levels than predicted, Apparent clustering of defects resulted in very good quality levels for fault coverages less than 99%.","PeriodicalId":272630,"journal":{"name":"1991, Proceedings. International Test Conference","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":"{\"title\":\"THE EFFECT OF DIFFERENT TEST SETS ON QUALITY LEVEL PREDICTION: WHEN IS 80% BETTER THAN 90%?\",\"authors\":\"P. Maxwell, R. Aitken, V. Johansen, I. Chiang\",\"doi\":\"10.1109/TEST.1991.519695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the use of stuck-at fault coverage as a means of determining quality levels. Data from a part tested with both functional and scan tests is analyzed and compared to three existing theories. It is shown that reasonable predictions of quality level are possible for the functional tests, but that scan tests produce significantly worse quality levels than predicted, Apparent clustering of defects resulted in very good quality levels for fault coverages less than 99%.\",\"PeriodicalId\":272630,\"journal\":{\"name\":\"1991, Proceedings. International Test Conference\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"182\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1991, Proceedings. International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.1991.519695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1991, Proceedings. International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.1991.519695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE EFFECT OF DIFFERENT TEST SETS ON QUALITY LEVEL PREDICTION: WHEN IS 80% BETTER THAN 90%?
This paper discusses the use of stuck-at fault coverage as a means of determining quality levels. Data from a part tested with both functional and scan tests is analyzed and compared to three existing theories. It is shown that reasonable predictions of quality level are possible for the functional tests, but that scan tests produce significantly worse quality levels than predicted, Apparent clustering of defects resulted in very good quality levels for fault coverages less than 99%.