A. Kologeski, F. Kastensmidt, Vianney Lapôtre, A. Gamatie, G. Sassatelli, A. Todri
{"title":"制造变异性下部分连接3D noc性能探索","authors":"A. Kologeski, F. Kastensmidt, Vianney Lapôtre, A. Gamatie, G. Sassatelli, A. Todri","doi":"10.1109/NEWCAS.2014.6933985","DOIUrl":null,"url":null,"abstract":"Several Through-Silicon-Vias (TSVs) may present resistive and open defects due to 3D manufacture variability. This paper advocates the use of 3D Network-on-Chip (NoC) with asynchronous communication interfaces to cope with significant variations in TSV propagation delays. The technique uses serial communication in the vertical channels to reduce the number of TSVs. Based on a representative delay distribution, we compare the average performance considering a non-defective 3D NoC, one with resistive defective TSVs and one with resistive and open defective TSVs. Results show that it is better to adapt the interfaces to cope with large margins of delay than to avoid TSVs by using adaptive routing.","PeriodicalId":216848,"journal":{"name":"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Performance exploration of partially connected 3D NoCs under manufacturing variability\",\"authors\":\"A. Kologeski, F. Kastensmidt, Vianney Lapôtre, A. Gamatie, G. Sassatelli, A. Todri\",\"doi\":\"10.1109/NEWCAS.2014.6933985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several Through-Silicon-Vias (TSVs) may present resistive and open defects due to 3D manufacture variability. This paper advocates the use of 3D Network-on-Chip (NoC) with asynchronous communication interfaces to cope with significant variations in TSV propagation delays. The technique uses serial communication in the vertical channels to reduce the number of TSVs. Based on a representative delay distribution, we compare the average performance considering a non-defective 3D NoC, one with resistive defective TSVs and one with resistive and open defective TSVs. Results show that it is better to adapt the interfaces to cope with large margins of delay than to avoid TSVs by using adaptive routing.\",\"PeriodicalId\":216848,\"journal\":{\"name\":\"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2014.6933985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2014.6933985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance exploration of partially connected 3D NoCs under manufacturing variability
Several Through-Silicon-Vias (TSVs) may present resistive and open defects due to 3D manufacture variability. This paper advocates the use of 3D Network-on-Chip (NoC) with asynchronous communication interfaces to cope with significant variations in TSV propagation delays. The technique uses serial communication in the vertical channels to reduce the number of TSVs. Based on a representative delay distribution, we compare the average performance considering a non-defective 3D NoC, one with resistive defective TSVs and one with resistive and open defective TSVs. Results show that it is better to adapt the interfaces to cope with large margins of delay than to avoid TSVs by using adaptive routing.