{"title":"宽带宽毕达哥拉斯整流器","authors":"G. Scandurra, G. Cannatà, C. Ciofi","doi":"10.1049/iet-cds.2012.0140","DOIUrl":null,"url":null,"abstract":"It has recently been proposed by a few authors that the trigonometric Pythagorean identity can be used for the implementation of precision full-wave rectifiers for sinusoidal signals with advantages with respect to diode-based rectifiers for amplitudes in the hundreds of mV range. The approaches proposed so far require a 90° phase shifter and this results in the obvious limitation that the input signal frequency must be known prior to amplitude measurement. In this study, the authors propose a new precision full-wave rectifier, capable of overcoming this limitation. Starting from the sinusoidal input, a squared co-sinusoidal signal is obtained in a wide frequency range by multiplying the output signals of an integrator and of a differentiator. The signal thus obtained is added to the input signal squared, and a square root extractor is employed for obtaining a DC signal proportional to the amplitude of the input signal. A prototype capable of operating within a two decades frequency range across 3200 Hz has been realised and tested with an accuracy better than 2% and a residual ripple of less than 0.3% for input amplitudes larger than 100 mV. A configuration capable of operating in the MHz frequency range is also proposed.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide bandwidth pythagorean rectifier\",\"authors\":\"G. Scandurra, G. Cannatà, C. Ciofi\",\"doi\":\"10.1049/iet-cds.2012.0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has recently been proposed by a few authors that the trigonometric Pythagorean identity can be used for the implementation of precision full-wave rectifiers for sinusoidal signals with advantages with respect to diode-based rectifiers for amplitudes in the hundreds of mV range. The approaches proposed so far require a 90° phase shifter and this results in the obvious limitation that the input signal frequency must be known prior to amplitude measurement. In this study, the authors propose a new precision full-wave rectifier, capable of overcoming this limitation. Starting from the sinusoidal input, a squared co-sinusoidal signal is obtained in a wide frequency range by multiplying the output signals of an integrator and of a differentiator. The signal thus obtained is added to the input signal squared, and a square root extractor is employed for obtaining a DC signal proportional to the amplitude of the input signal. A prototype capable of operating within a two decades frequency range across 3200 Hz has been realised and tested with an accuracy better than 2% and a residual ripple of less than 0.3% for input amplitudes larger than 100 mV. A configuration capable of operating in the MHz frequency range is also proposed.\",\"PeriodicalId\":120076,\"journal\":{\"name\":\"IET Circuits Devices Syst.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Circuits Devices Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-cds.2012.0140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2012.0140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It has recently been proposed by a few authors that the trigonometric Pythagorean identity can be used for the implementation of precision full-wave rectifiers for sinusoidal signals with advantages with respect to diode-based rectifiers for amplitudes in the hundreds of mV range. The approaches proposed so far require a 90° phase shifter and this results in the obvious limitation that the input signal frequency must be known prior to amplitude measurement. In this study, the authors propose a new precision full-wave rectifier, capable of overcoming this limitation. Starting from the sinusoidal input, a squared co-sinusoidal signal is obtained in a wide frequency range by multiplying the output signals of an integrator and of a differentiator. The signal thus obtained is added to the input signal squared, and a square root extractor is employed for obtaining a DC signal proportional to the amplitude of the input signal. A prototype capable of operating within a two decades frequency range across 3200 Hz has been realised and tested with an accuracy better than 2% and a residual ripple of less than 0.3% for input amplitudes larger than 100 mV. A configuration capable of operating in the MHz frequency range is also proposed.