计算机作为新的数学现实:V.更简单的预警问题

N. Vavilov
{"title":"计算机作为新的数学现实:V.更简单的预警问题","authors":"N. Vavilov","doi":"10.32603/2071-2340-2022-3-5-63","DOIUrl":null,"url":null,"abstract":"In this part I continue the discussion of the role of computers in the current research on the additive number theory, in particular in the solution of the easier Waring problem. This problem consists in finding for each natural k the smallest such s =v(k) that all natural numbers n can be written as sums of s integer k-th powers n = ± x1k ± ... ± xsk with signs. This problem turned out to be much harder than the original Waring problem. It is intimately related with many other problems of arithmetic and diophantine geometry. In this part I discuss various aspects of this problem, and several further related problems, such as the rational Waring problem, and Waring problems for finite fields, other number rings, and polynomials, with special emphasys on connection with polynomial identities and the role of computers in their solution. As of today, these problems are quite far from being fully solved, and provide extremely broad terrain both for the use in education, and amateur computer assisted exploration.","PeriodicalId":319537,"journal":{"name":"Computer Tools in Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computers as novel mathematical reality: V. Easier Waring problem\",\"authors\":\"N. Vavilov\",\"doi\":\"10.32603/2071-2340-2022-3-5-63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this part I continue the discussion of the role of computers in the current research on the additive number theory, in particular in the solution of the easier Waring problem. This problem consists in finding for each natural k the smallest such s =v(k) that all natural numbers n can be written as sums of s integer k-th powers n = ± x1k ± ... ± xsk with signs. This problem turned out to be much harder than the original Waring problem. It is intimately related with many other problems of arithmetic and diophantine geometry. In this part I discuss various aspects of this problem, and several further related problems, such as the rational Waring problem, and Waring problems for finite fields, other number rings, and polynomials, with special emphasys on connection with polynomial identities and the role of computers in their solution. As of today, these problems are quite far from being fully solved, and provide extremely broad terrain both for the use in education, and amateur computer assisted exploration.\",\"PeriodicalId\":319537,\"journal\":{\"name\":\"Computer Tools in Education\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Tools in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32603/2071-2340-2022-3-5-63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Tools in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32603/2071-2340-2022-3-5-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这一部分中,我继续讨论计算机在当前加性数论的研究中的作用,特别是在解决更容易的Waring问题方面。这个问题的关键在于找出每个自然k的最小值,使得s =v(k)使得所有自然数n都可以写成整数n的k次方n =±x1k±…±XSK带符号。这个问题比原来的沃林问题要难得多。它与算术和丢番图几何的许多其他问题密切相关。在这一部分中,我讨论了这个问题的各个方面,以及几个进一步相关的问题,如有理Waring问题,有限域的Waring问题,其他数环和多项式的Waring问题,特别强调了与多项式恒等式的联系以及计算机在其解决中的作用。时至今日,这些问题还远未完全解决,并为教育和业余计算机辅助探索的应用提供了极其广阔的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computers as novel mathematical reality: V. Easier Waring problem
In this part I continue the discussion of the role of computers in the current research on the additive number theory, in particular in the solution of the easier Waring problem. This problem consists in finding for each natural k the smallest such s =v(k) that all natural numbers n can be written as sums of s integer k-th powers n = ± x1k ± ... ± xsk with signs. This problem turned out to be much harder than the original Waring problem. It is intimately related with many other problems of arithmetic and diophantine geometry. In this part I discuss various aspects of this problem, and several further related problems, such as the rational Waring problem, and Waring problems for finite fields, other number rings, and polynomials, with special emphasys on connection with polynomial identities and the role of computers in their solution. As of today, these problems are quite far from being fully solved, and provide extremely broad terrain both for the use in education, and amateur computer assisted exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信