合作与非合作路径问题的博弈论研究

A.A. Economides, J. Silvester
{"title":"合作与非合作路径问题的博弈论研究","authors":"A.A. Economides, J. Silvester","doi":"10.1109/ITS.1990.175673","DOIUrl":null,"url":null,"abstract":"Previous work on multiobjective routing takes a system optimization approach to minimize some global objective function. An approach using a game-theoretic formulation is taken. The authors focus on a simple example of two classes which minimize a delay objective. Three cases are considered. The first case (baseline) does global optimization where the routing policies for the two classes are forced to be equal. The second case is where the two classes cooperate to minimize the same objective function of global average delay. In general, this team optimization approach will have a multiplicity of solutions which make it possible to use secondary objectives to select the operating point. The third case is where each class optimizes its own objective function, which corresponds to the classical noncooperative Nash game. This allows different objectives to be adopted by the different classes.<<ETX>>","PeriodicalId":405932,"journal":{"name":"SBT/IEEE International Symposium on Telecommunications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A game theory approach to cooperative and non-cooperative routing problems\",\"authors\":\"A.A. Economides, J. Silvester\",\"doi\":\"10.1109/ITS.1990.175673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work on multiobjective routing takes a system optimization approach to minimize some global objective function. An approach using a game-theoretic formulation is taken. The authors focus on a simple example of two classes which minimize a delay objective. Three cases are considered. The first case (baseline) does global optimization where the routing policies for the two classes are forced to be equal. The second case is where the two classes cooperate to minimize the same objective function of global average delay. In general, this team optimization approach will have a multiplicity of solutions which make it possible to use secondary objectives to select the operating point. The third case is where each class optimizes its own objective function, which corresponds to the classical noncooperative Nash game. This allows different objectives to be adopted by the different classes.<<ETX>>\",\"PeriodicalId\":405932,\"journal\":{\"name\":\"SBT/IEEE International Symposium on Telecommunications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SBT/IEEE International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.1990.175673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SBT/IEEE International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.1990.175673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

以往的多目标路由研究采用系统优化的方法来最小化全局目标函数。采用博弈论公式的方法。作者集中讨论了两个最小化延迟目标的类的简单例子。考虑了三种情况。第一种情况(基线)进行全局优化,强制两个类的路由策略相等。第二种情况是两类协同最小化相同的全局平均延迟目标函数。一般来说,这种团队优化方法将有多种解决方案,这使得使用次要目标来选择操作点成为可能。第三种情况是每个类都优化自己的目标函数,这与经典的非合作纳什博弈相对应。这允许不同的类采用不同的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A game theory approach to cooperative and non-cooperative routing problems
Previous work on multiobjective routing takes a system optimization approach to minimize some global objective function. An approach using a game-theoretic formulation is taken. The authors focus on a simple example of two classes which minimize a delay objective. Three cases are considered. The first case (baseline) does global optimization where the routing policies for the two classes are forced to be equal. The second case is where the two classes cooperate to minimize the same objective function of global average delay. In general, this team optimization approach will have a multiplicity of solutions which make it possible to use secondary objectives to select the operating point. The third case is where each class optimizes its own objective function, which corresponds to the classical noncooperative Nash game. This allows different objectives to be adopted by the different classes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信