柔性作业车间调度问题的免疫遗传算法

Jia Ma, Yunlong Zhu, Gang Shi
{"title":"柔性作业车间调度问题的免疫遗传算法","authors":"Jia Ma, Yunlong Zhu, Gang Shi","doi":"10.1109/ICAL.2010.5585331","DOIUrl":null,"url":null,"abstract":"An kind of immune genetic algorithm(IGA) is proposed for solving the flexible job-shop scheduling problem(FJSP). Based on the globalsearching method of classic genetic algorithm (SG), and using the diversity preservation strategy of antibodies in biology immunity mechanism, the method greatly improves the colony diversity of GA and compared to genetic algorithm. The results show that immune genetic algorithm performs better in aspect of global and local search ability and search speed.","PeriodicalId":393739,"journal":{"name":"2010 IEEE International Conference on Automation and Logistics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Immune genetic algorithm for flexible job-shop scheduling problem\",\"authors\":\"Jia Ma, Yunlong Zhu, Gang Shi\",\"doi\":\"10.1109/ICAL.2010.5585331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An kind of immune genetic algorithm(IGA) is proposed for solving the flexible job-shop scheduling problem(FJSP). Based on the globalsearching method of classic genetic algorithm (SG), and using the diversity preservation strategy of antibodies in biology immunity mechanism, the method greatly improves the colony diversity of GA and compared to genetic algorithm. The results show that immune genetic algorithm performs better in aspect of global and local search ability and search speed.\",\"PeriodicalId\":393739,\"journal\":{\"name\":\"2010 IEEE International Conference on Automation and Logistics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Automation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAL.2010.5585331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2010.5585331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种求解柔性作业车间调度问题的免疫遗传算法(IGA)。该方法基于经典遗传算法(SG)的全局搜索方法,利用生物免疫机制中抗体的多样性保存策略,大大提高了遗传算法的群体多样性,并与遗传算法相比较。结果表明,免疫遗传算法在全局和局部搜索能力以及搜索速度方面都有较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immune genetic algorithm for flexible job-shop scheduling problem
An kind of immune genetic algorithm(IGA) is proposed for solving the flexible job-shop scheduling problem(FJSP). Based on the globalsearching method of classic genetic algorithm (SG), and using the diversity preservation strategy of antibodies in biology immunity mechanism, the method greatly improves the colony diversity of GA and compared to genetic algorithm. The results show that immune genetic algorithm performs better in aspect of global and local search ability and search speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信