基于图像分割和分类的移动路径损失预测

S. Phaiboon, P. Phokharatkul, P. Kittithamavongs
{"title":"基于图像分割和分类的移动路径损失预测","authors":"S. Phaiboon, P. Phokharatkul, P. Kittithamavongs","doi":"10.1109/ICMMT.2007.381345","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent radio wave propagation prediction model by using the 2-dimension aerial image which is taken from the actual area. An suburban area is used as examples. The prediction procedure is done in three steps. First, the image segmentation is employed to divide the area image into subgroups by using Maximum Likelihood algorithm. The second step uses the subgroup images from step 1 to determine the parameters for the fuzzy model that we use to classify the propagation areas. The final step is to plot the path loss contour on the image so the cellular cell site can be chosen. The research results show that the proposed segmentation provides an accuracy of 80-90% compared with the actual area. Therefore, cell site selection can be designed on the 2-dimension aerial map with the error less than 8 dB.","PeriodicalId":409971,"journal":{"name":"2007 International Conference on Microwave and Millimeter Wave Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mobile Path Loss Prediction with Image Segmentation and Classification\",\"authors\":\"S. Phaiboon, P. Phokharatkul, P. Kittithamavongs\",\"doi\":\"10.1109/ICMMT.2007.381345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent radio wave propagation prediction model by using the 2-dimension aerial image which is taken from the actual area. An suburban area is used as examples. The prediction procedure is done in three steps. First, the image segmentation is employed to divide the area image into subgroups by using Maximum Likelihood algorithm. The second step uses the subgroup images from step 1 to determine the parameters for the fuzzy model that we use to classify the propagation areas. The final step is to plot the path loss contour on the image so the cellular cell site can be chosen. The research results show that the proposed segmentation provides an accuracy of 80-90% compared with the actual area. Therefore, cell site selection can be designed on the 2-dimension aerial map with the error less than 8 dB.\",\"PeriodicalId\":409971,\"journal\":{\"name\":\"2007 International Conference on Microwave and Millimeter Wave Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Microwave and Millimeter Wave Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMMT.2007.381345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Microwave and Millimeter Wave Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2007.381345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用实际区域的二维航拍图像进行无线电波传播的智能预测模型。以郊区为例。预测过程分三步完成。首先,采用最大似然算法对区域图像进行分组;第二步使用第一步的子组图像来确定模糊模型的参数,我们使用模糊模型来对传播区域进行分类。最后一步是在图像上绘制路径损失轮廓,以便选择蜂窝细胞位置。研究结果表明,所提出的分割方法与实际面积的分割精度达到80-90%。因此,可以在二维航空地图上设计小区选址,误差小于8db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile Path Loss Prediction with Image Segmentation and Classification
This paper presents an intelligent radio wave propagation prediction model by using the 2-dimension aerial image which is taken from the actual area. An suburban area is used as examples. The prediction procedure is done in three steps. First, the image segmentation is employed to divide the area image into subgroups by using Maximum Likelihood algorithm. The second step uses the subgroup images from step 1 to determine the parameters for the fuzzy model that we use to classify the propagation areas. The final step is to plot the path loss contour on the image so the cellular cell site can be chosen. The research results show that the proposed segmentation provides an accuracy of 80-90% compared with the actual area. Therefore, cell site selection can be designed on the 2-dimension aerial map with the error less than 8 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信