基于散射测量的机器学习在控制多电子束光刻中的应用:AM:先进的计量学

N. Figueiro, Francisco Sanchez, R. Koret, Michael Shifrin, Yoav Etzioni, S. Wolfling, M. Sendelbach, Y. Blancquaert, Thibault Labbaye, G. Rademaker, J. Pradelles, L. Mourier, Stéphane Rey, L. Pain
{"title":"基于散射测量的机器学习在控制多电子束光刻中的应用:AM:先进的计量学","authors":"N. Figueiro, Francisco Sanchez, R. Koret, Michael Shifrin, Yoav Etzioni, S. Wolfling, M. Sendelbach, Y. Blancquaert, Thibault Labbaye, G. Rademaker, J. Pradelles, L. Mourier, Stéphane Rey, L. Pain","doi":"10.1109/ASMC.2018.8373222","DOIUrl":null,"url":null,"abstract":"The evaluation of scatterometry and machine learning for the monitoring of intended critical dimension (CD) variations within scatterometry targets is presented. Such variations mimic non-uniformities potentially caused by massively parallel e-beam Maskless Lithography (ML2). Although previous results [1] demonstrate that traditional model-based scatter-ometry can properly quantify these within-target variations, the current work shows that the application of scatterometry-based machine learning complements the model-based scatterometry results. While model-based scatterometry can provide information about structure profile, which can be used to detect parameter shifts even in the absence of a reference, machine learning provides superb correlation to a defined reference.","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of scatterometry-based machine learning to control multiple electron beam lithography: AM: Advanced metrology\",\"authors\":\"N. Figueiro, Francisco Sanchez, R. Koret, Michael Shifrin, Yoav Etzioni, S. Wolfling, M. Sendelbach, Y. Blancquaert, Thibault Labbaye, G. Rademaker, J. Pradelles, L. Mourier, Stéphane Rey, L. Pain\",\"doi\":\"10.1109/ASMC.2018.8373222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of scatterometry and machine learning for the monitoring of intended critical dimension (CD) variations within scatterometry targets is presented. Such variations mimic non-uniformities potentially caused by massively parallel e-beam Maskless Lithography (ML2). Although previous results [1] demonstrate that traditional model-based scatter-ometry can properly quantify these within-target variations, the current work shows that the application of scatterometry-based machine learning complements the model-based scatterometry results. While model-based scatterometry can provide information about structure profile, which can be used to detect parameter shifts even in the absence of a reference, machine learning provides superb correlation to a defined reference.\",\"PeriodicalId\":349004,\"journal\":{\"name\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2018.8373222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了对散射测量和机器学习的评估,以监测散射测量目标内的预期临界尺寸(CD)变化。这种变化模拟了大规模平行电子束无掩模光刻(ML2)可能引起的不均匀性。虽然先前的结果[1]表明传统的基于模型的散射测量可以适当地量化这些目标内的变化,但目前的工作表明,基于散射测量的机器学习的应用可以补充基于模型的散射测量结果。虽然基于模型的散射测量可以提供有关结构轮廓的信息,即使在没有参考的情况下也可以用于检测参数变化,但机器学习提供了与已定义参考的极好相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of scatterometry-based machine learning to control multiple electron beam lithography: AM: Advanced metrology
The evaluation of scatterometry and machine learning for the monitoring of intended critical dimension (CD) variations within scatterometry targets is presented. Such variations mimic non-uniformities potentially caused by massively parallel e-beam Maskless Lithography (ML2). Although previous results [1] demonstrate that traditional model-based scatter-ometry can properly quantify these within-target variations, the current work shows that the application of scatterometry-based machine learning complements the model-based scatterometry results. While model-based scatterometry can provide information about structure profile, which can be used to detect parameter shifts even in the absence of a reference, machine learning provides superb correlation to a defined reference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信