异常检测的新方法:运行规则多变量变异系数控制图

P. H. Tran, A. Rakitzis, H. D. Nguyen, Q. Nguyen, H. Tran, K. Tran, C. Heuchenne
{"title":"异常检测的新方法:运行规则多变量变异系数控制图","authors":"P. H. Tran, A. Rakitzis, H. D. Nguyen, Q. Nguyen, H. Tran, K. Tran, C. Heuchenne","doi":"10.1109/ATC50776.2020.9255479","DOIUrl":null,"url":null,"abstract":"Among the anomaly detection methods, control charts have been considered important techniques. In practice, however, even under the normal behaviour of the data, the standard deviation of the sequence is not stable. In such cases, the coefficient of variation (CV) is a more appropriate measure for assessing system stability. In this paper, we consider the statistical design of Run Rules-based control charts for monitoring the CV of multivariate data. A Markov chain approach is used to evaluate the statistical performance of the proposed charts. The computational results show that the Run Rules-based charts outperform the standard Shewhart control chart significantly. Moreover, by choosing an appropriate scheme, the Run Rules-based charts perform better than the Run Sum control chart for monitoring the multivariate CV.","PeriodicalId":218972,"journal":{"name":"2020 International Conference on Advanced Technologies for Communications (ATC)","volume":"10 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Methods for Anomaly Detection: Run Rules Multivariate Coefficient of Variation Control Charts\",\"authors\":\"P. H. Tran, A. Rakitzis, H. D. Nguyen, Q. Nguyen, H. Tran, K. Tran, C. Heuchenne\",\"doi\":\"10.1109/ATC50776.2020.9255479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the anomaly detection methods, control charts have been considered important techniques. In practice, however, even under the normal behaviour of the data, the standard deviation of the sequence is not stable. In such cases, the coefficient of variation (CV) is a more appropriate measure for assessing system stability. In this paper, we consider the statistical design of Run Rules-based control charts for monitoring the CV of multivariate data. A Markov chain approach is used to evaluate the statistical performance of the proposed charts. The computational results show that the Run Rules-based charts outperform the standard Shewhart control chart significantly. Moreover, by choosing an appropriate scheme, the Run Rules-based charts perform better than the Run Sum control chart for monitoring the multivariate CV.\",\"PeriodicalId\":218972,\"journal\":{\"name\":\"2020 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"10 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATC50776.2020.9255479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC50776.2020.9255479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在异常检测方法中,控制图一直被认为是一种重要的技术。然而,在实践中,即使在数据的正常行为下,序列的标准差也是不稳定的。在这种情况下,变异系数(CV)是评估系统稳定性的更合适的度量。在本文中,我们考虑了基于运行规则的控制图的统计设计,以监测多变量数据的CV。一个马尔可夫链方法被用来评估所提出的图表的统计性能。计算结果表明,基于运行规则的控制图明显优于标准的Shewhart控制图。此外,通过选择适当的方案,基于运行规则的图表比运行和控制图在监测多变量CV方面表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Methods for Anomaly Detection: Run Rules Multivariate Coefficient of Variation Control Charts
Among the anomaly detection methods, control charts have been considered important techniques. In practice, however, even under the normal behaviour of the data, the standard deviation of the sequence is not stable. In such cases, the coefficient of variation (CV) is a more appropriate measure for assessing system stability. In this paper, we consider the statistical design of Run Rules-based control charts for monitoring the CV of multivariate data. A Markov chain approach is used to evaluate the statistical performance of the proposed charts. The computational results show that the Run Rules-based charts outperform the standard Shewhart control chart significantly. Moreover, by choosing an appropriate scheme, the Run Rules-based charts perform better than the Run Sum control chart for monitoring the multivariate CV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信