H. Kundur, E. Klumperink, B. Nauta, V. Srinivasan, Ali Kiaei
{"title":"射频变换器线性化技术对工艺、电压和温度变化具有鲁棒性","authors":"H. Kundur, E. Klumperink, B. Nauta, V. Srinivasan, Ali Kiaei","doi":"10.1109/ASSCC.2014.7008928","DOIUrl":null,"url":null,"abstract":"A new reconfigurable linearized low noise transconductance amplifier (LNTA) design for a software-defined radio receiver is presented. The transconductor design aims at realizing high linearity at RF in a way that is robust for Process, Voltage and Temperature variations. It exploits resistive degeneration in combination with a floating battery by-pass circuit and replica biasing to improve IIP3 in a robust way. The LNTA with current domain mixer is implemented in a 45nm CMOS process. Compared to an inverter based LNTA with the same transconductance, it improves PIIP3 from 2 dBm to a robust PIIP3 of 8 dBm at the cost of 67% increase in power consumption.","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"RF transconductor linearization technique robust to process, voltage and temperature variations\",\"authors\":\"H. Kundur, E. Klumperink, B. Nauta, V. Srinivasan, Ali Kiaei\",\"doi\":\"10.1109/ASSCC.2014.7008928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new reconfigurable linearized low noise transconductance amplifier (LNTA) design for a software-defined radio receiver is presented. The transconductor design aims at realizing high linearity at RF in a way that is robust for Process, Voltage and Temperature variations. It exploits resistive degeneration in combination with a floating battery by-pass circuit and replica biasing to improve IIP3 in a robust way. The LNTA with current domain mixer is implemented in a 45nm CMOS process. Compared to an inverter based LNTA with the same transconductance, it improves PIIP3 from 2 dBm to a robust PIIP3 of 8 dBm at the cost of 67% increase in power consumption.\",\"PeriodicalId\":161031,\"journal\":{\"name\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2014.7008928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RF transconductor linearization technique robust to process, voltage and temperature variations
A new reconfigurable linearized low noise transconductance amplifier (LNTA) design for a software-defined radio receiver is presented. The transconductor design aims at realizing high linearity at RF in a way that is robust for Process, Voltage and Temperature variations. It exploits resistive degeneration in combination with a floating battery by-pass circuit and replica biasing to improve IIP3 in a robust way. The LNTA with current domain mixer is implemented in a 45nm CMOS process. Compared to an inverter based LNTA with the same transconductance, it improves PIIP3 from 2 dBm to a robust PIIP3 of 8 dBm at the cost of 67% increase in power consumption.