剩余水层对运动钢表面冷却的影响

O. Resl, M. Pohanka
{"title":"剩余水层对运动钢表面冷却的影响","authors":"O. Resl, M. Pohanka","doi":"10.37904/metal.2021.4101","DOIUrl":null,"url":null,"abstract":"Steel is an integral part of today's life. To obtain the desired mechanical properties of hot rolled steel plates or strips, it is necessary to predict and control the cooling process. Cooling of a hot rolled strip on a run-out table or in a continuous annealing line is commonly realized by laminar and spray cooling, and involves a large amount of water, which impinges on the hot surface of the steel. Water is accumulated on the upper surface, which means the jets do not have a direct impact on the steel surface and the cooling intensity is changed. The cooling process is also affected by the remaining water layer that remains on the surface after cooling. This thin layer occurs both on the upper and the bottom surface, and also for light sprays. The remaining water can significantly influence the final temperature of the steel strip if the target temperature is below 500 °C. In this article, the effect of remaining water on cooling is experimentally investigated. A full cone spray nozzle is used for the measurements and the cooling in different areas (under the nozzle, outside the nozzle spray) is studied.","PeriodicalId":266696,"journal":{"name":"METAL 2021 Conference Proeedings","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the remaining water layer on the cooling of moving steel surfaces\",\"authors\":\"O. Resl, M. Pohanka\",\"doi\":\"10.37904/metal.2021.4101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steel is an integral part of today's life. To obtain the desired mechanical properties of hot rolled steel plates or strips, it is necessary to predict and control the cooling process. Cooling of a hot rolled strip on a run-out table or in a continuous annealing line is commonly realized by laminar and spray cooling, and involves a large amount of water, which impinges on the hot surface of the steel. Water is accumulated on the upper surface, which means the jets do not have a direct impact on the steel surface and the cooling intensity is changed. The cooling process is also affected by the remaining water layer that remains on the surface after cooling. This thin layer occurs both on the upper and the bottom surface, and also for light sprays. The remaining water can significantly influence the final temperature of the steel strip if the target temperature is below 500 °C. In this article, the effect of remaining water on cooling is experimentally investigated. A full cone spray nozzle is used for the measurements and the cooling in different areas (under the nozzle, outside the nozzle spray) is studied.\",\"PeriodicalId\":266696,\"journal\":{\"name\":\"METAL 2021 Conference Proeedings\",\"volume\":\"295 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"METAL 2021 Conference Proeedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2021.4101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"METAL 2021 Conference Proeedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2021.4101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢铁是当今生活中不可或缺的一部分。为了使热轧钢板或带材获得理想的力学性能,有必要对冷却过程进行预测和控制。热轧带钢在冷却台或连续退火生产线上的冷却通常是通过层流和喷雾冷却来实现的,并且涉及到大量的水,这些水撞击在钢的热表面上。水积聚在上表面,这意味着射流对钢表面没有直接影响,冷却强度发生了变化。冷却过程还受到冷却后留在表面的剩余水层的影响。这种薄层既存在于上表面,也存在于下表面,也适用于轻喷。当目标温度低于500℃时,剩余水分对钢带最终温度的影响较大。本文通过实验研究了剩余水对冷却的影响。采用全锥喷嘴进行测量,并对不同区域(喷嘴下、喷嘴外)的冷却进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the remaining water layer on the cooling of moving steel surfaces
Steel is an integral part of today's life. To obtain the desired mechanical properties of hot rolled steel plates or strips, it is necessary to predict and control the cooling process. Cooling of a hot rolled strip on a run-out table or in a continuous annealing line is commonly realized by laminar and spray cooling, and involves a large amount of water, which impinges on the hot surface of the steel. Water is accumulated on the upper surface, which means the jets do not have a direct impact on the steel surface and the cooling intensity is changed. The cooling process is also affected by the remaining water layer that remains on the surface after cooling. This thin layer occurs both on the upper and the bottom surface, and also for light sprays. The remaining water can significantly influence the final temperature of the steel strip if the target temperature is below 500 °C. In this article, the effect of remaining water on cooling is experimentally investigated. A full cone spray nozzle is used for the measurements and the cooling in different areas (under the nozzle, outside the nozzle spray) is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信