A. Chang, J. Patel, C. Cordoba, B. Kaminska, K. Kavanagh
{"title":"增加离子膜材料表面积的制备技术及其在高比表面积双电层电容器中的应用","authors":"A. Chang, J. Patel, C. Cordoba, B. Kaminska, K. Kavanagh","doi":"10.1117/12.2040273","DOIUrl":null,"url":null,"abstract":"An application friendly technique to increase the surface area of the ionomer membrane such as Aquivion™ has been developed. By utilizing existing micro-fabrication technologies, square pillars were fabricated onto glass and silicon substrates. In combination with a low cost heat press, the glass and silicon stamps were used to successfully hot emboss micro-features onto the ionomer membrane. Consequently, the surface area of the Aquivion™ membrane was drastically increased enabling potential improvement of sensing and energy storage technologies. Preliminary results show successful fabrication of devices with systematic higher surface area and an improved capacitance.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fabrication technology to increase surface area of ionomer membrane material and its application towards high surface area electric double-layer capacitors\",\"authors\":\"A. Chang, J. Patel, C. Cordoba, B. Kaminska, K. Kavanagh\",\"doi\":\"10.1117/12.2040273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application friendly technique to increase the surface area of the ionomer membrane such as Aquivion™ has been developed. By utilizing existing micro-fabrication technologies, square pillars were fabricated onto glass and silicon substrates. In combination with a low cost heat press, the glass and silicon stamps were used to successfully hot emboss micro-features onto the ionomer membrane. Consequently, the surface area of the Aquivion™ membrane was drastically increased enabling potential improvement of sensing and energy storage technologies. Preliminary results show successful fabrication of devices with systematic higher surface area and an improved capacitance.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2040273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2040273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication technology to increase surface area of ionomer membrane material and its application towards high surface area electric double-layer capacitors
An application friendly technique to increase the surface area of the ionomer membrane such as Aquivion™ has been developed. By utilizing existing micro-fabrication technologies, square pillars were fabricated onto glass and silicon substrates. In combination with a low cost heat press, the glass and silicon stamps were used to successfully hot emboss micro-features onto the ionomer membrane. Consequently, the surface area of the Aquivion™ membrane was drastically increased enabling potential improvement of sensing and energy storage technologies. Preliminary results show successful fabrication of devices with systematic higher surface area and an improved capacitance.