改进的增强hopfield神经网络的最优热机组承诺

M. Kamh, A. Abdelaziz, S. Mekhamer, M. Badr
{"title":"改进的增强hopfield神经网络的最优热机组承诺","authors":"M. Kamh, A. Abdelaziz, S. Mekhamer, M. Badr","doi":"10.1109/PES.2009.5260222","DOIUrl":null,"url":null,"abstract":"This paper develops a novel solution methodology of the Thermal Unit Commitment Problem (TUCP) using modified Augmented Hopfield Network (AHN) with enhanced performance. The modifications are mandatory to eliminate the error that conventional AHN structure is reported to suffer from. This error originates from the mapping process, the corner stone in using AHN as an optimization tool. A new solution algorithm is developed by combining the AHN with the proposed modifications. In order to verify the effectiveness of the new algorithm, it is applied and tested to some examples reported in literature and the solution is then compared with that obtained by counterpart Artificial Intelligence (AI) techniques. Unlike other AI techniques, the solution obtained using the modified AHN is more optimal and satisfying all the operating constraints.","PeriodicalId":258632,"journal":{"name":"2009 IEEE Power & Energy Society General Meeting","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modified augmented hopfield neural network for optimal thermal unit commitment\",\"authors\":\"M. Kamh, A. Abdelaziz, S. Mekhamer, M. Badr\",\"doi\":\"10.1109/PES.2009.5260222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a novel solution methodology of the Thermal Unit Commitment Problem (TUCP) using modified Augmented Hopfield Network (AHN) with enhanced performance. The modifications are mandatory to eliminate the error that conventional AHN structure is reported to suffer from. This error originates from the mapping process, the corner stone in using AHN as an optimization tool. A new solution algorithm is developed by combining the AHN with the proposed modifications. In order to verify the effectiveness of the new algorithm, it is applied and tested to some examples reported in literature and the solution is then compared with that obtained by counterpart Artificial Intelligence (AI) techniques. Unlike other AI techniques, the solution obtained using the modified AHN is more optimal and satisfying all the operating constraints.\",\"PeriodicalId\":258632,\"journal\":{\"name\":\"2009 IEEE Power & Energy Society General Meeting\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2009.5260222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2009.5260222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种利用改进的增强Hopfield网络(AHN)求解热机组承诺问题(TUCP)的新方法。修改是强制性的,以消除传统的AHN结构所遭受的错误。这种错误源于映射过程,映射过程是使用AHN作为优化工具的基石。将AHN与所提出的修正相结合,提出了一种新的求解算法。为了验证新算法的有效性,对文献中报道的一些实例进行了应用和测试,并将其解与同类人工智能(AI)技术的解进行了比较。与其他人工智能技术不同的是,使用改进的AHN得到的解更优,并且满足所有的运行约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified augmented hopfield neural network for optimal thermal unit commitment
This paper develops a novel solution methodology of the Thermal Unit Commitment Problem (TUCP) using modified Augmented Hopfield Network (AHN) with enhanced performance. The modifications are mandatory to eliminate the error that conventional AHN structure is reported to suffer from. This error originates from the mapping process, the corner stone in using AHN as an optimization tool. A new solution algorithm is developed by combining the AHN with the proposed modifications. In order to verify the effectiveness of the new algorithm, it is applied and tested to some examples reported in literature and the solution is then compared with that obtained by counterpart Artificial Intelligence (AI) techniques. Unlike other AI techniques, the solution obtained using the modified AHN is more optimal and satisfying all the operating constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信