用epld并行实现二维离散余弦变换

D. V. R. Murthy, S. Ramachandran, S. Srinivasan
{"title":"用epld并行实现二维离散余弦变换","authors":"D. V. R. Murthy, S. Ramachandran, S. Srinivasan","doi":"10.1109/ICVD.1999.745178","DOIUrl":null,"url":null,"abstract":"A novel implementation of Two Dimensional Discrete Cosine Transform (2D-DCT) using Embedded Programmable Logic Devices (EPLDs) has been proposed in this paper. The key feature of this scheme is that it's architecture is regular, linear, pipelined and it fits into just four numbers of commercially available EPLDs. It is capable of processing images of size 512/spl times/512 pixels at rates of 25 frames per second. The chip set offers device independent design and can be used in conjunction with other processors. The algorithm implemented can be easily modified and remapped as per needs with a minimum of effort since the architecture is realized using modular Hardware Description Language (HDL). The hardware complexity and accuracy of the proposed DCT processor compare favourably with those of other known implementation techniques.","PeriodicalId":443373,"journal":{"name":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Parallel implementation of 2D-discrete cosine transform using EPLDs\",\"authors\":\"D. V. R. Murthy, S. Ramachandran, S. Srinivasan\",\"doi\":\"10.1109/ICVD.1999.745178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel implementation of Two Dimensional Discrete Cosine Transform (2D-DCT) using Embedded Programmable Logic Devices (EPLDs) has been proposed in this paper. The key feature of this scheme is that it's architecture is regular, linear, pipelined and it fits into just four numbers of commercially available EPLDs. It is capable of processing images of size 512/spl times/512 pixels at rates of 25 frames per second. The chip set offers device independent design and can be used in conjunction with other processors. The algorithm implemented can be easily modified and remapped as per needs with a minimum of effort since the architecture is realized using modular Hardware Description Language (HDL). The hardware complexity and accuracy of the proposed DCT processor compare favourably with those of other known implementation techniques.\",\"PeriodicalId\":443373,\"journal\":{\"name\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVD.1999.745178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVD.1999.745178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种利用嵌入式可编程逻辑器件(epld)实现二维离散余弦变换(2D-DCT)的新方法。该方案的关键特点是它的架构是规则的,线性的,流水线的,并且它只适合4个商用epld。它能够以每秒25帧的速率处理大小为512/spl倍/512像素的图像。该芯片组提供独立于设备的设计,可以与其他处理器一起使用。由于该体系结构是使用模块化硬件描述语言(HDL)实现的,因此可以很容易地根据需要修改和重新映射算法。所提出的DCT处理器的硬件复杂度和精度优于其他已知的实现技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel implementation of 2D-discrete cosine transform using EPLDs
A novel implementation of Two Dimensional Discrete Cosine Transform (2D-DCT) using Embedded Programmable Logic Devices (EPLDs) has been proposed in this paper. The key feature of this scheme is that it's architecture is regular, linear, pipelined and it fits into just four numbers of commercially available EPLDs. It is capable of processing images of size 512/spl times/512 pixels at rates of 25 frames per second. The chip set offers device independent design and can be used in conjunction with other processors. The algorithm implemented can be easily modified and remapped as per needs with a minimum of effort since the architecture is realized using modular Hardware Description Language (HDL). The hardware complexity and accuracy of the proposed DCT processor compare favourably with those of other known implementation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信