关于插值和变量赋值

Pavel Jancík, J. Kofroň, Simone Rollini, N. Sharygina
{"title":"关于插值和变量赋值","authors":"Pavel Jancík, J. Kofroň, Simone Rollini, N. Sharygina","doi":"10.1109/FMCAD.2014.6987604","DOIUrl":null,"url":null,"abstract":"Craig interpolants are widely used in program verification as a means of abstraction. In this paper, we (i) introduce Partial Variable Assignment Interpolants (PVAIs) as a generalization of Craig interpolants. A variable assignment focuses computed interpolants by restricting the set of clauses taken into account during interpolation. PVAIs can be for example employed in the context of DAG interpolation, in order to prevent unwanted out-of-scope variables to appear in interpolants. Furthermore, we (ii) present a way to compute PVAIs for propositional logic based on an extension of the Labeled Interpolation Systems, and (iii) analyze the strength of computed interpolants and prove the conditions under which they have the path interpolation property.","PeriodicalId":363683,"journal":{"name":"2014 Formal Methods in Computer-Aided Design (FMCAD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On interpolants and variable assignments\",\"authors\":\"Pavel Jancík, J. Kofroň, Simone Rollini, N. Sharygina\",\"doi\":\"10.1109/FMCAD.2014.6987604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Craig interpolants are widely used in program verification as a means of abstraction. In this paper, we (i) introduce Partial Variable Assignment Interpolants (PVAIs) as a generalization of Craig interpolants. A variable assignment focuses computed interpolants by restricting the set of clauses taken into account during interpolation. PVAIs can be for example employed in the context of DAG interpolation, in order to prevent unwanted out-of-scope variables to appear in interpolants. Furthermore, we (ii) present a way to compute PVAIs for propositional logic based on an extension of the Labeled Interpolation Systems, and (iii) analyze the strength of computed interpolants and prove the conditions under which they have the path interpolation property.\",\"PeriodicalId\":363683,\"journal\":{\"name\":\"2014 Formal Methods in Computer-Aided Design (FMCAD)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Formal Methods in Computer-Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2014.6987604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Formal Methods in Computer-Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2014.6987604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

克雷格插值作为一种抽象的方法被广泛应用于程序验证中。在本文中,我们(i)引入了部分变量分配插值(PVAIs)作为克雷格插值的推广。变量赋值通过限制内插过程中考虑的子句集来集中计算内插。例如,pvai可以在DAG插值的上下文中使用,以防止不需要的范围外变量出现在插值中。此外,我们(ii)提出了一种基于标记插值系统的扩展来计算命题逻辑的pvis的方法,(iii)分析了计算插值的强度并证明了它们具有路径插值性质的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On interpolants and variable assignments
Craig interpolants are widely used in program verification as a means of abstraction. In this paper, we (i) introduce Partial Variable Assignment Interpolants (PVAIs) as a generalization of Craig interpolants. A variable assignment focuses computed interpolants by restricting the set of clauses taken into account during interpolation. PVAIs can be for example employed in the context of DAG interpolation, in order to prevent unwanted out-of-scope variables to appear in interpolants. Furthermore, we (ii) present a way to compute PVAIs for propositional logic based on an extension of the Labeled Interpolation Systems, and (iii) analyze the strength of computed interpolants and prove the conditions under which they have the path interpolation property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信