{"title":"基于inp的异质结双极晶体管的二维物理和数值模拟","authors":"T. Tauqeer, J. Sexton, F. Amir, M. Missous","doi":"10.1109/ASDAM.2008.4743335","DOIUrl":null,"url":null,"abstract":"State-of-the-art HBTs were designed, grown, fabricated and characterized in-house. The novelty of this process was the use of dimeric phosphorus generated from a Gallium Phosphide (GaP) decomposition source, which permitted growth at a fairly low temperature (420degC) while conserving extremely high quality materials. A self-aligned transistor with an emitter area of 5times5 mum2 demonstrated a low offset voltage of 150 mV and high current gain of 90. An excellent agreement with the measured data was achieved using physical modelling packages developed by SILVACO.","PeriodicalId":306699,"journal":{"name":"2008 International Conference on Advanced Semiconductor Devices and Microsystems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Two-Dimensional Physical and Numerical Modelling of InP-based Heterojunction Bipolar Transistors\",\"authors\":\"T. Tauqeer, J. Sexton, F. Amir, M. Missous\",\"doi\":\"10.1109/ASDAM.2008.4743335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art HBTs were designed, grown, fabricated and characterized in-house. The novelty of this process was the use of dimeric phosphorus generated from a Gallium Phosphide (GaP) decomposition source, which permitted growth at a fairly low temperature (420degC) while conserving extremely high quality materials. A self-aligned transistor with an emitter area of 5times5 mum2 demonstrated a low offset voltage of 150 mV and high current gain of 90. An excellent agreement with the measured data was achieved using physical modelling packages developed by SILVACO.\",\"PeriodicalId\":306699,\"journal\":{\"name\":\"2008 International Conference on Advanced Semiconductor Devices and Microsystems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Advanced Semiconductor Devices and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASDAM.2008.4743335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Advanced Semiconductor Devices and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASDAM.2008.4743335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-Dimensional Physical and Numerical Modelling of InP-based Heterojunction Bipolar Transistors
State-of-the-art HBTs were designed, grown, fabricated and characterized in-house. The novelty of this process was the use of dimeric phosphorus generated from a Gallium Phosphide (GaP) decomposition source, which permitted growth at a fairly low temperature (420degC) while conserving extremely high quality materials. A self-aligned transistor with an emitter area of 5times5 mum2 demonstrated a low offset voltage of 150 mV and high current gain of 90. An excellent agreement with the measured data was achieved using physical modelling packages developed by SILVACO.