验证变量模型的反向测试方法

Kirit Vaniya, Ravi Gor
{"title":"验证变量模型的反向测试方法","authors":"Kirit Vaniya, Ravi Gor","doi":"10.29121/ijoest.v6.i6.2022.408","DOIUrl":null,"url":null,"abstract":"Value at risk (VaR) is one of the important market risk measures. It measures the possible potential loss on given investment in terms of value, with certain probability for certain time horizon. In this paper, our aim is to discuss different back-testing approaches to validate VaR models, and also test it the real market data. We back tested VaR of Nifty 50 index obtained by Variance Co-variance method, Historical simulation method, Monte-Carlo simulation, and cubic polynomial regression method. We have used Total exceptions by binary back-testing over entire population. we have also used Basel Traffic Light Zone Test, Kupiec POF-test, Kupiec TUFF-test, and Haas’ Mixed-Kupiec test and analyzed the above methods.","PeriodicalId":331301,"journal":{"name":"International Journal of Engineering Science Technologies","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BACK-TESTING APPROACHES FOR VALIDATING VAR MODELS\",\"authors\":\"Kirit Vaniya, Ravi Gor\",\"doi\":\"10.29121/ijoest.v6.i6.2022.408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Value at risk (VaR) is one of the important market risk measures. It measures the possible potential loss on given investment in terms of value, with certain probability for certain time horizon. In this paper, our aim is to discuss different back-testing approaches to validate VaR models, and also test it the real market data. We back tested VaR of Nifty 50 index obtained by Variance Co-variance method, Historical simulation method, Monte-Carlo simulation, and cubic polynomial regression method. We have used Total exceptions by binary back-testing over entire population. we have also used Basel Traffic Light Zone Test, Kupiec POF-test, Kupiec TUFF-test, and Haas’ Mixed-Kupiec test and analyzed the above methods.\",\"PeriodicalId\":331301,\"journal\":{\"name\":\"International Journal of Engineering Science Technologies\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29121/ijoest.v6.i6.2022.408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29121/ijoest.v6.i6.2022.408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

风险价值(VaR)是衡量市场风险的重要指标之一。它以价值衡量给定投资的潜在损失,在一定的时间范围内具有一定的概率。在本文中,我们的目的是讨论不同的回测方法来验证VaR模型,并测试它的真实市场数据。对方差协方差法、历史模拟法、蒙特卡罗模拟法、三次多项式回归法得到的Nifty 50指数VaR进行了回验。我们通过对整个人口进行二元回测使用了总异常。我们还使用了Basel Traffic Light Zone Test、Kupiec pof Test、Kupiec TUFF-test和Haas’Mixed-Kupiec Test,并对上述方法进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BACK-TESTING APPROACHES FOR VALIDATING VAR MODELS
Value at risk (VaR) is one of the important market risk measures. It measures the possible potential loss on given investment in terms of value, with certain probability for certain time horizon. In this paper, our aim is to discuss different back-testing approaches to validate VaR models, and also test it the real market data. We back tested VaR of Nifty 50 index obtained by Variance Co-variance method, Historical simulation method, Monte-Carlo simulation, and cubic polynomial regression method. We have used Total exceptions by binary back-testing over entire population. we have also used Basel Traffic Light Zone Test, Kupiec POF-test, Kupiec TUFF-test, and Haas’ Mixed-Kupiec test and analyzed the above methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信