一些沙质土壤的反射光谱和光学深度

M. Satterwhite, C. Allen
{"title":"一些沙质土壤的反射光谱和光学深度","authors":"M. Satterwhite, C. Allen","doi":"10.1117/12.603663","DOIUrl":null,"url":null,"abstract":"Soil surface materials often originate from different sources and are spectrally variable. Their presence will alter soil spectral features and mask the nature of the underlying soil surface horizon. The upper-most, thin, granular layer determines a soil sample's spectra. This study's objective was to characterize the optical depth of some sandy soils and their relationship to spectral reflectance from 0.35-2.50mm. The reflectance-optical depth relationships were determined for four, air-dried, granular, sieved samples, with particle sizes of 1.0-2.0, 0.5-1.0, 0.25-0.5, 0.125-0.25, 0.075-0.125, or <0.075mm. Each particle size separate has convergent reflectance spectra associated with an optical depth that ranged from 0.2 to 8.1mm. The optical depth was greater for larger sized particles than for smaller sized particles. Normalizing the sample depth by the mean particle diameter of each sieve fraction found the optical depth-spectral feature relationships were determined by a layer of granular materials that was 5-8 particles thick. Three non-sieved, well-graded composite soils were also evaluated and their optical depths ranged from 1.4 to 3.9mm. These non-sieved composite soils include a medium fused-silica sand, a medium calcareous sand, and a medium gypsum sand.","PeriodicalId":417187,"journal":{"name":"Storage and Retrieval for Image and Video Databases","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Reflectance spectra and optical depth of some sandy soils\",\"authors\":\"M. Satterwhite, C. Allen\",\"doi\":\"10.1117/12.603663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil surface materials often originate from different sources and are spectrally variable. Their presence will alter soil spectral features and mask the nature of the underlying soil surface horizon. The upper-most, thin, granular layer determines a soil sample's spectra. This study's objective was to characterize the optical depth of some sandy soils and their relationship to spectral reflectance from 0.35-2.50mm. The reflectance-optical depth relationships were determined for four, air-dried, granular, sieved samples, with particle sizes of 1.0-2.0, 0.5-1.0, 0.25-0.5, 0.125-0.25, 0.075-0.125, or <0.075mm. Each particle size separate has convergent reflectance spectra associated with an optical depth that ranged from 0.2 to 8.1mm. The optical depth was greater for larger sized particles than for smaller sized particles. Normalizing the sample depth by the mean particle diameter of each sieve fraction found the optical depth-spectral feature relationships were determined by a layer of granular materials that was 5-8 particles thick. Three non-sieved, well-graded composite soils were also evaluated and their optical depths ranged from 1.4 to 3.9mm. These non-sieved composite soils include a medium fused-silica sand, a medium calcareous sand, and a medium gypsum sand.\",\"PeriodicalId\":417187,\"journal\":{\"name\":\"Storage and Retrieval for Image and Video Databases\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Storage and Retrieval for Image and Video Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.603663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Storage and Retrieval for Image and Video Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.603663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

土壤表面物质通常来自不同的来源,在光谱上是可变的。它们的存在将改变土壤光谱特征,掩盖下伏土壤表面水平面的性质。最上面的薄颗粒层决定了土壤样品的光谱。本研究的目的是表征一些沙质土壤的光学深度及其与光谱反射率在0.35-2.50mm之间的关系。对四种粒径为1.0-2.0、0.5-1.0、0.25-0.5、0.125-0.25、0.075-0.125和<0.075mm的风干、粒状和筛分样品的反射率-光学深度关系进行了测定。每个粒径分离具有与光学深度相关的会聚反射光谱,范围从0.2到8.1mm。大颗粒的光学深度大于小颗粒。用每个筛分的平均粒径对样品深度进行归一化,发现光学深度-光谱特征关系是由5-8粒厚的颗粒材料层决定的。对3种未筛分、分级良好的复合土进行了评价,其光学深度为1.4 ~ 3.9mm。这些非筛复合土包括一种中等熔融硅砂,一种中等钙质砂和一种中等石膏砂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflectance spectra and optical depth of some sandy soils
Soil surface materials often originate from different sources and are spectrally variable. Their presence will alter soil spectral features and mask the nature of the underlying soil surface horizon. The upper-most, thin, granular layer determines a soil sample's spectra. This study's objective was to characterize the optical depth of some sandy soils and their relationship to spectral reflectance from 0.35-2.50mm. The reflectance-optical depth relationships were determined for four, air-dried, granular, sieved samples, with particle sizes of 1.0-2.0, 0.5-1.0, 0.25-0.5, 0.125-0.25, 0.075-0.125, or <0.075mm. Each particle size separate has convergent reflectance spectra associated with an optical depth that ranged from 0.2 to 8.1mm. The optical depth was greater for larger sized particles than for smaller sized particles. Normalizing the sample depth by the mean particle diameter of each sieve fraction found the optical depth-spectral feature relationships were determined by a layer of granular materials that was 5-8 particles thick. Three non-sieved, well-graded composite soils were also evaluated and their optical depths ranged from 1.4 to 3.9mm. These non-sieved composite soils include a medium fused-silica sand, a medium calcareous sand, and a medium gypsum sand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信