K. Ikeda, Y. Yamashita, Akira Endoh, K. Hikosaka, Takashi Mimura
{"title":"应变si mosfet的肖特基势垒高度工程","authors":"K. Ikeda, Y. Yamashita, Akira Endoh, K. Hikosaka, Takashi Mimura","doi":"10.1109/DRC.2004.1367808","DOIUrl":null,"url":null,"abstract":"The Schottky source/drain MOSFET (SSD-MOSFET) is an attractive design for ballistic MOSFETs because it has the potential to allow high-energy carrier injection from a metal source to an intrinsic channel (J.R. Tucker et al, Appl. Phys. Lett., vol. 65, p. 618, 1994; J. Kedzierski et al, IEDM Tech. Dig., p. 57, 2000). However, achieving high-drive current is difficult because of the relatively high potential barrier (Schottky barrier) at the source. To overcome this problem, we have proposed the Schottky-barrier-height (SBH) engineering through semiconductor bandgap modulation (K. Ikeda et al, 60th DRC late news paper; K. Ikeda et al, IEEE Electron Device Lett., vol. 23, p. 670, 2002). For effective SBH engineering with high controllability, stress control to control the bandgap is key issue. However, we know of no published reports on strain distributions in a strained-Si channel or at silicide/strained-Si interfaces. In this paper, we demonstrate strain-distribution analysis using STEM micrographs of a strained-Si channel SSD-MOSFET combined with fast-Fourier transform mapping (FFTM) (T. Ide et al, Jpn, J. Appl. Phys., vol. 37, p. L1546, 1998).","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schottky-barrier-height engineering for strained-Si MOSFETs\",\"authors\":\"K. Ikeda, Y. Yamashita, Akira Endoh, K. Hikosaka, Takashi Mimura\",\"doi\":\"10.1109/DRC.2004.1367808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Schottky source/drain MOSFET (SSD-MOSFET) is an attractive design for ballistic MOSFETs because it has the potential to allow high-energy carrier injection from a metal source to an intrinsic channel (J.R. Tucker et al, Appl. Phys. Lett., vol. 65, p. 618, 1994; J. Kedzierski et al, IEDM Tech. Dig., p. 57, 2000). However, achieving high-drive current is difficult because of the relatively high potential barrier (Schottky barrier) at the source. To overcome this problem, we have proposed the Schottky-barrier-height (SBH) engineering through semiconductor bandgap modulation (K. Ikeda et al, 60th DRC late news paper; K. Ikeda et al, IEEE Electron Device Lett., vol. 23, p. 670, 2002). For effective SBH engineering with high controllability, stress control to control the bandgap is key issue. However, we know of no published reports on strain distributions in a strained-Si channel or at silicide/strained-Si interfaces. In this paper, we demonstrate strain-distribution analysis using STEM micrographs of a strained-Si channel SSD-MOSFET combined with fast-Fourier transform mapping (FFTM) (T. Ide et al, Jpn, J. Appl. Phys., vol. 37, p. L1546, 1998).\",\"PeriodicalId\":385948,\"journal\":{\"name\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2004.1367808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
肖特基源/漏极MOSFET (SSD-MOSFET)是弹道MOSFET的一种有吸引力的设计,因为它有可能允许从金属源向本禀通道注入高能载流子(J.R. Tucker等人,苹果公司)。理论物理。列托人。,第65卷,第618页,1994;J. Kedzierski等,IEDM Tech. Dig。,第57页,2000年)。然而,由于在源处具有较高的势垒(肖特基势垒),实现高驱动电流是困难的。为了克服这个问题,我们提出了通过半导体带隙调制的肖特基势垒高度(SBH)工程(K. Ikeda et al, 60 DRC后期新闻论文;K. Ikeda等人,IEEE电子器件学报。,第23卷,第670页,2002)。为了实现有效的高可控性的单轨结构工程,控制带隙的应力控制是关键问题。然而,我们知道没有关于应变si通道或硅化物/应变si界面应变分布的公开报道。在本文中,我们展示了应变si通道SSD-MOSFET结合快速傅里叶变换映射(FFTM)的STEM显微图的应变分布分析(T. Ide等,Jpn, J. appll。理论物理。,第37卷,第1546页,1998年)。
Schottky-barrier-height engineering for strained-Si MOSFETs
The Schottky source/drain MOSFET (SSD-MOSFET) is an attractive design for ballistic MOSFETs because it has the potential to allow high-energy carrier injection from a metal source to an intrinsic channel (J.R. Tucker et al, Appl. Phys. Lett., vol. 65, p. 618, 1994; J. Kedzierski et al, IEDM Tech. Dig., p. 57, 2000). However, achieving high-drive current is difficult because of the relatively high potential barrier (Schottky barrier) at the source. To overcome this problem, we have proposed the Schottky-barrier-height (SBH) engineering through semiconductor bandgap modulation (K. Ikeda et al, 60th DRC late news paper; K. Ikeda et al, IEEE Electron Device Lett., vol. 23, p. 670, 2002). For effective SBH engineering with high controllability, stress control to control the bandgap is key issue. However, we know of no published reports on strain distributions in a strained-Si channel or at silicide/strained-Si interfaces. In this paper, we demonstrate strain-distribution analysis using STEM micrographs of a strained-Si channel SSD-MOSFET combined with fast-Fourier transform mapping (FFTM) (T. Ide et al, Jpn, J. Appl. Phys., vol. 37, p. L1546, 1998).