动态模糊语法分析器利用词性标注器和模糊最大-最小技术分析英语句子

Suvarna G. Kanakaraddi, Suvarna S Nandval
{"title":"动态模糊语法分析器利用词性标注器和模糊最大-最小技术分析英语句子","authors":"Suvarna G. Kanakaraddi, Suvarna S Nandval","doi":"10.1109/ICCTCT.2018.8551093","DOIUrl":null,"url":null,"abstract":"Natural Language (NL) is an essential part of ourlife. Humans use language for communication. NL is a prevailing tool used by the humans to convey the information. Natural Language Understanding (NLU) is a major challenge in Natural Language Processing (NLP). NLP is a part of Artificial Intelligence (AI). NLP provides a significant tool for communication. It attempts to produces noise free data and conversion of noise to text. NLU is having different levels. This paper presents the issue with respect to one of the level such as syntax analysis. To provide a solution for syntax analysis, dynamic fuzzy parser is designed and implemented to parse the English input sentences. Traditional approach of parsing is enhanced by applying fuzzy logic. This helps to know the syntactic correctness of the sentence. Penns tree bank parts of speech tags are used for the Parts of Speech Tagger (POS). POS tagger assigns the parts of speech tags for the input English sentence. Then these tags of the words are parsed using the grammar rules. Finally the result is displayed to represent the number of words parsed in a sentence with its associated fuzzy membership value. This parser produces Precision value of 1(100%), Recall value of 0.92 (92%) and F-measure value of 0.9583 for the sample of 50 correct and 50 incorrect sentences.","PeriodicalId":344188,"journal":{"name":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Fuzzy Parser to Parse English Sentence Using POS Tagger and Fuzzy Max-Min Technique\",\"authors\":\"Suvarna G. Kanakaraddi, Suvarna S Nandval\",\"doi\":\"10.1109/ICCTCT.2018.8551093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural Language (NL) is an essential part of ourlife. Humans use language for communication. NL is a prevailing tool used by the humans to convey the information. Natural Language Understanding (NLU) is a major challenge in Natural Language Processing (NLP). NLP is a part of Artificial Intelligence (AI). NLP provides a significant tool for communication. It attempts to produces noise free data and conversion of noise to text. NLU is having different levels. This paper presents the issue with respect to one of the level such as syntax analysis. To provide a solution for syntax analysis, dynamic fuzzy parser is designed and implemented to parse the English input sentences. Traditional approach of parsing is enhanced by applying fuzzy logic. This helps to know the syntactic correctness of the sentence. Penns tree bank parts of speech tags are used for the Parts of Speech Tagger (POS). POS tagger assigns the parts of speech tags for the input English sentence. Then these tags of the words are parsed using the grammar rules. Finally the result is displayed to represent the number of words parsed in a sentence with its associated fuzzy membership value. This parser produces Precision value of 1(100%), Recall value of 0.92 (92%) and F-measure value of 0.9583 for the sample of 50 correct and 50 incorrect sentences.\",\"PeriodicalId\":344188,\"journal\":{\"name\":\"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTCT.2018.8551093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTCT.2018.8551093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然语言(NL)是我们生活中必不可少的一部分。人类使用语言进行交流。自然语言是人类传递信息的常用工具。自然语言理解(NLU)是自然语言处理(NLP)中的一个主要挑战。NLP是人工智能(AI)的一部分。NLP为沟通提供了一个重要的工具。它试图产生无噪声的数据,并将噪声转换为文本。NLU有不同的层次。本文从语法分析等层面提出了这一问题。为了给语法分析提供解决方案,设计并实现了动态模糊解析器来解析英语输入句子。采用模糊逻辑对传统的分析方法进行了改进。这有助于了解句子的句法正确性。词性标注器(POS)使用了Penns树库词性标注器。词性标注器为输入的英语句子分配词性标注。然后使用语法规则解析单词的这些标记。最后显示结果,以表示在句子中解析的单词数及其关联的模糊隶属度值。对于50个正确句子和50个不正确句子的样本,该解析器产生的Precision值为1(100%)、Recall值为0.92(92%)和F-measure值为0.9583。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Fuzzy Parser to Parse English Sentence Using POS Tagger and Fuzzy Max-Min Technique
Natural Language (NL) is an essential part of ourlife. Humans use language for communication. NL is a prevailing tool used by the humans to convey the information. Natural Language Understanding (NLU) is a major challenge in Natural Language Processing (NLP). NLP is a part of Artificial Intelligence (AI). NLP provides a significant tool for communication. It attempts to produces noise free data and conversion of noise to text. NLU is having different levels. This paper presents the issue with respect to one of the level such as syntax analysis. To provide a solution for syntax analysis, dynamic fuzzy parser is designed and implemented to parse the English input sentences. Traditional approach of parsing is enhanced by applying fuzzy logic. This helps to know the syntactic correctness of the sentence. Penns tree bank parts of speech tags are used for the Parts of Speech Tagger (POS). POS tagger assigns the parts of speech tags for the input English sentence. Then these tags of the words are parsed using the grammar rules. Finally the result is displayed to represent the number of words parsed in a sentence with its associated fuzzy membership value. This parser produces Precision value of 1(100%), Recall value of 0.92 (92%) and F-measure value of 0.9583 for the sample of 50 correct and 50 incorrect sentences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信