{"title":"基于单相变化存储器的三元内容可寻址单元","authors":"P. Junsangsri, F. Lombardi, Jie Han","doi":"10.1145/2742060.2742062","DOIUrl":null,"url":null,"abstract":"This paper presents the novel design of a Ternary Content Addressable Memory (TCAM); different from existing designs found in the technical literature, this cell utilizes a single Phase Change Memory (PCM) as storage element and ambipolarity for comparison. A memory core consisting of a CMOS transistor and a PCM is employed (1T1P); for the search operation, the data in the 1T1P memory core is read and its value is established using two differential sense amplifiers. Compared with other non-volatile memory cells using emerging technologies (such as PCM-based, and memristor-based), simulation results show that the proposed non-volatile TCAM cell offer significant advantages in terms of power dissipation, PDP for the search operation, write time and reduced circuit complexity (in terms of lower counts in transistors and storage elements).","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Ternary Content Addressable Cell Using a Single Phase Change Memory (PCM)\",\"authors\":\"P. Junsangsri, F. Lombardi, Jie Han\",\"doi\":\"10.1145/2742060.2742062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the novel design of a Ternary Content Addressable Memory (TCAM); different from existing designs found in the technical literature, this cell utilizes a single Phase Change Memory (PCM) as storage element and ambipolarity for comparison. A memory core consisting of a CMOS transistor and a PCM is employed (1T1P); for the search operation, the data in the 1T1P memory core is read and its value is established using two differential sense amplifiers. Compared with other non-volatile memory cells using emerging technologies (such as PCM-based, and memristor-based), simulation results show that the proposed non-volatile TCAM cell offer significant advantages in terms of power dissipation, PDP for the search operation, write time and reduced circuit complexity (in terms of lower counts in transistors and storage elements).\",\"PeriodicalId\":255133,\"journal\":{\"name\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742060.2742062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Ternary Content Addressable Cell Using a Single Phase Change Memory (PCM)
This paper presents the novel design of a Ternary Content Addressable Memory (TCAM); different from existing designs found in the technical literature, this cell utilizes a single Phase Change Memory (PCM) as storage element and ambipolarity for comparison. A memory core consisting of a CMOS transistor and a PCM is employed (1T1P); for the search operation, the data in the 1T1P memory core is read and its value is established using two differential sense amplifiers. Compared with other non-volatile memory cells using emerging technologies (such as PCM-based, and memristor-based), simulation results show that the proposed non-volatile TCAM cell offer significant advantages in terms of power dissipation, PDP for the search operation, write time and reduced circuit complexity (in terms of lower counts in transistors and storage elements).