局部Gabor Fisher人脸识别分类器

N. Sang, Jiawei Wu, Kun Yu
{"title":"局部Gabor Fisher人脸识别分类器","authors":"N. Sang, Jiawei Wu, Kun Yu","doi":"10.1109/ICIG.2007.127","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel Local Gabor Fisher Classifier (LGFC) for face recognition. Gabor feature vector has been recognized as one of the most successful face representations, however, its dimension is too high for fast extraction and accurate classification. In LGFC, Local Feature Analysis (LFA) is exploited to select the most informative Gabor features (hereinafter as local Gabor features) optimally. The selected low-dimensional local Gabor features are then classified by Fisher Linear Discriminant (FLD) for final face identification. We demonstrate that Gabor representation is much more robust than gray-level intensity to image variation caused by the imprecision of facial feature localization. Comparative studies of different similarity measures to local fisher classifier and local Gabor fisher classifier are also performed. The experiments on two traditional face databases, ORL and Aberdeen, have shown that compared with other face recognition schemes, the proposed method can effectively reduce the dimensionality of Gabor features and greatly increase the recognition accuracy.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Local Gabor Fisher Classifier for Face Recognition\",\"authors\":\"N. Sang, Jiawei Wu, Kun Yu\",\"doi\":\"10.1109/ICIG.2007.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel Local Gabor Fisher Classifier (LGFC) for face recognition. Gabor feature vector has been recognized as one of the most successful face representations, however, its dimension is too high for fast extraction and accurate classification. In LGFC, Local Feature Analysis (LFA) is exploited to select the most informative Gabor features (hereinafter as local Gabor features) optimally. The selected low-dimensional local Gabor features are then classified by Fisher Linear Discriminant (FLD) for final face identification. We demonstrate that Gabor representation is much more robust than gray-level intensity to image variation caused by the imprecision of facial feature localization. Comparative studies of different similarity measures to local fisher classifier and local Gabor fisher classifier are also performed. The experiments on two traditional face databases, ORL and Aberdeen, have shown that compared with other face recognition schemes, the proposed method can effectively reduce the dimensionality of Gabor features and greatly increase the recognition accuracy.\",\"PeriodicalId\":367106,\"journal\":{\"name\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2007.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的局部Gabor Fisher分类器(LGFC)用于人脸识别。Gabor特征向量已被公认为最成功的人脸表示之一,但其维数过高,不利于快速提取和准确分类。在LGFC中,利用局部特征分析(Local Feature Analysis, LFA)最优地选择信息量最大的Gabor特征(以下简称局部Gabor特征)。然后利用Fisher线性判别法(FLD)对选定的低维局部Gabor特征进行分类,进行最终的人脸识别。结果表明,Gabor表示对人脸特征定位不精确引起的图像变化具有比灰度强度更强的鲁棒性。对局部fisher分类器和局部Gabor fisher分类器的不同相似性度量进行了比较研究。在ORL和Aberdeen两种传统人脸数据库上的实验表明,与其他人脸识别方案相比,本文方法可以有效地降低Gabor特征的维数,大大提高识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Gabor Fisher Classifier for Face Recognition
This paper proposes a novel Local Gabor Fisher Classifier (LGFC) for face recognition. Gabor feature vector has been recognized as one of the most successful face representations, however, its dimension is too high for fast extraction and accurate classification. In LGFC, Local Feature Analysis (LFA) is exploited to select the most informative Gabor features (hereinafter as local Gabor features) optimally. The selected low-dimensional local Gabor features are then classified by Fisher Linear Discriminant (FLD) for final face identification. We demonstrate that Gabor representation is much more robust than gray-level intensity to image variation caused by the imprecision of facial feature localization. Comparative studies of different similarity measures to local fisher classifier and local Gabor fisher classifier are also performed. The experiments on two traditional face databases, ORL and Aberdeen, have shown that compared with other face recognition schemes, the proposed method can effectively reduce the dimensionality of Gabor features and greatly increase the recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信