基于模糊划分的数值距离

S. Guillaume, B. Charnomordic, P. Loisel
{"title":"基于模糊划分的数值距离","authors":"S. Guillaume, B. Charnomordic, P. Loisel","doi":"10.2991/EUSFLAT.2011.99","DOIUrl":null,"url":null,"abstract":"This work studies a new distance function which takes into account expert knowledge by making use of fuzzy partitions. It considers the symbolic distances between concepts and is equivalent to the Euclidean distance for regular partitions made of triangular membership functions. Its behaviour is investigated in comparison with that of the Euclidean distance and its interest is shown for clustering applications.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A numerical distance based on fuzzy partitions\",\"authors\":\"S. Guillaume, B. Charnomordic, P. Loisel\",\"doi\":\"10.2991/EUSFLAT.2011.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies a new distance function which takes into account expert knowledge by making use of fuzzy partitions. It considers the symbolic distances between concepts and is equivalent to the Euclidean distance for regular partitions made of triangular membership functions. Its behaviour is investigated in comparison with that of the Euclidean distance and its interest is shown for clustering applications.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/EUSFLAT.2011.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/EUSFLAT.2011.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用模糊划分的方法,研究了一种新的考虑专家知识的距离函数。它考虑概念之间的符号距离,等价于由三角形隶属函数构成的正则分区的欧几里得距离。研究了它的行为与欧几里得距离的比较,并表明了它对聚类应用的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical distance based on fuzzy partitions
This work studies a new distance function which takes into account expert knowledge by making use of fuzzy partitions. It considers the symbolic distances between concepts and is equivalent to the Euclidean distance for regular partitions made of triangular membership functions. Its behaviour is investigated in comparison with that of the Euclidean distance and its interest is shown for clustering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信