{"title":"基于深度信念网络的中文文本分类","authors":"Jiapeng Song, Sijun Qin, Pengzhou Zhang","doi":"10.1109/ICIS.2016.7550914","DOIUrl":null,"url":null,"abstract":"With the rapid development of Internet, text categorization becomes a mission-critical technology that organizes and processes large amounts of data in document. Deep belief networks have powerful abilities of learning and can extract highly distinguishable features from the high-dimensional original feature space. So a new Chinese text categorization algorithm based on deep learning structure and semi-supervised deep belief networks is presented in this paper. We extract original feature with TFIDF-ICF, construct the text classification model based on DBN, and select the number of hidden layers and hidden units. Our experimental results indicated that the performance of text categorization algorithm based on deep belief networks is better than support vector machine.","PeriodicalId":336322,"journal":{"name":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Chinese text categorization based on deep belief networks\",\"authors\":\"Jiapeng Song, Sijun Qin, Pengzhou Zhang\",\"doi\":\"10.1109/ICIS.2016.7550914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of Internet, text categorization becomes a mission-critical technology that organizes and processes large amounts of data in document. Deep belief networks have powerful abilities of learning and can extract highly distinguishable features from the high-dimensional original feature space. So a new Chinese text categorization algorithm based on deep learning structure and semi-supervised deep belief networks is presented in this paper. We extract original feature with TFIDF-ICF, construct the text classification model based on DBN, and select the number of hidden layers and hidden units. Our experimental results indicated that the performance of text categorization algorithm based on deep belief networks is better than support vector machine.\",\"PeriodicalId\":336322,\"journal\":{\"name\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2016.7550914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2016.7550914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chinese text categorization based on deep belief networks
With the rapid development of Internet, text categorization becomes a mission-critical technology that organizes and processes large amounts of data in document. Deep belief networks have powerful abilities of learning and can extract highly distinguishable features from the high-dimensional original feature space. So a new Chinese text categorization algorithm based on deep learning structure and semi-supervised deep belief networks is presented in this paper. We extract original feature with TFIDF-ICF, construct the text classification model based on DBN, and select the number of hidden layers and hidden units. Our experimental results indicated that the performance of text categorization algorithm based on deep belief networks is better than support vector machine.